searching the database
Your data matches 519 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000013
(load all 51 compositions to match this statistic)
(load all 51 compositions to match this statistic)
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000684
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
St000684: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The global dimension of the LNakayama algebra associated to a Dyck path.
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with $n$ points for $n \geq 2$. Number those points from the left to the right by $0,1,\ldots,n-1$.
The algebra is then uniquely determined by the dimension $c_i$ of the projective indecomposable modules at point $i$. Such algebras are then uniquely determined by lists of the form $[c_0,c_1,...,c_{n-1}]$ with the conditions: $c_{n-1}=1$ and $c_i -1 \leq c_{i+1}$ for all $i$. The number of such algebras is then the $n-1$-st Catalan number $C_{n-1}$.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between $n$-LNakayama algebras with global dimension bounded by $m$ and Dyck paths with height at most $m$.
Examples:
* For $m=2$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
* For $m=3$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Matching statistic: St001203
(load all 25 compositions to match this statistic)
(load all 25 compositions to match this statistic)
St001203: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra.
Example:
[5,6,6,6,6] goes into [2,2,2,2,1].
Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra.
The statistic return the global dimension of the CNakayama algebra divided by 2.
Matching statistic: St001197
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
St001197: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
Description
The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001506
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
St001506: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
Description
Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra.
Matching statistic: St000011
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St001068
(load all 36 compositions to match this statistic)
(load all 36 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001068: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Matching statistic: St000053
(load all 35 compositions to match this statistic)
(load all 35 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
Description
The number of valleys of the Dyck path.
Matching statistic: St001028
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001028: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001028: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
Description
Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000010
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> [1]
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> [2]
=> 1
[1,1,0,0]
=> ([],2)
=> [1,1]
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 1
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> [2,1]
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> [2,1]
=> 2
[1,1,1,0,0,0]
=> ([],3)
=> [1,1,1]
=> 3
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 3
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 2
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 3
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 3
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> [2,1,1]
=> 3
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> [2,1,1]
=> 3
[1,1,1,1,0,0,0,0]
=> ([],4)
=> [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 4
Description
The length of the partition.
The following 509 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000025The number of initial rises of a Dyck path. St000105The number of blocks in the set partition. St000147The largest part of an integer partition. St000167The number of leaves of an ordered tree. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001058The breadth of the ordered tree. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001494The Alon-Tarsi number of a graph. St001809The index of the step at the first peak of maximal height in a Dyck path. St000012The area of a Dyck path. St000024The number of double up and double down steps of a Dyck path. St000234The number of global ascents of a permutation. St000340The number of non-final maximal constant sub-paths of length greater than one. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000439The position of the first down step of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000172The Grundy number of a graph. St000273The domination number of a graph. St000288The number of ones in a binary word. St000378The diagonal inversion number of an integer partition. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000444The length of the maximal rise of a Dyck path. St000507The number of ascents of a standard tableau. St000544The cop number of a graph. St000676The number of odd rises of a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000722The number of different neighbourhoods in a graph. St000733The row containing the largest entry of a standard tableau. St000734The last entry in the first row of a standard tableau. St000808The number of up steps of the associated bargraph. St000916The packing number of a graph. St000971The smallest closer of a set partition. St001029The size of the core of a graph. St001050The number of terminal closers of a set partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001389The number of partitions of the same length below the given integer partition. St001462The number of factors of a standard tableaux under concatenation. St001581The achromatic number of a graph. St001733The number of weak left to right maxima of a Dyck path. St000157The number of descents of a standard tableau. St000211The rank of the set partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000521The number of distinct subtrees of an ordered tree. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001479The number of bridges of a graph. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001777The number of weak descents in an integer composition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000925The number of topologically connected components of a set partition. St000730The maximal arc length of a set partition. St000874The position of the last double rise in a Dyck path. St000984The number of boxes below precisely one peak. St000504The cardinality of the first block of a set partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St001062The maximal size of a block of a set partition. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000502The number of successions of a set partitions. St000728The dimension of a set partition. St000932The number of occurrences of the pattern UDU in a Dyck path. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001484The number of singletons of an integer partition. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000536The pathwidth of a graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001720The minimal length of a chain of small intervals in a lattice. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001962The proper pathwidth of a graph. St001108The 2-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001270The bandwidth of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001829The common independence number of a graph. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000445The number of rises of length 1 of a Dyck path. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000308The height of the tree associated to a permutation. St000159The number of distinct parts of the integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000527The width of the poset. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000451The length of the longest pattern of the form k 1 2. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000068The number of minimal elements in a poset. St000306The bounce count of a Dyck path. St000069The number of maximal elements of a poset. St000528The height of a poset. St001343The dimension of the reduced incidence algebra of a poset. St000996The number of exclusive left-to-right maxima of a permutation. St000071The number of maximal chains in a poset. St000822The Hadwiger number of the graph. St000744The length of the path to the largest entry in a standard Young tableau. St000912The number of maximal antichains in a poset. St000662The staircase size of the code of a permutation. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001726The number of visible inversions of a permutation. St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001644The dimension of a graph. St001717The largest size of an interval in a poset. St000470The number of runs in a permutation. St000868The aid statistic in the sense of Shareshian-Wachs. St001489The maximum of the number of descents and the number of inverse descents. St000354The number of recoils of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St000833The comajor index of a permutation. St000041The number of nestings of a perfect matching. St000632The jump number of the poset. St001397Number of pairs of incomparable elements in a finite poset. St000028The number of stack-sorts needed to sort a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St000702The number of weak deficiencies of a permutation. St000245The number of ascents of a permutation. St000654The first descent of a permutation. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000741The Colin de Verdière graph invariant. St000539The number of odd inversions of a permutation. St000795The mad of a permutation. St000831The number of indices that are either descents or recoils. St001061The number of indices that are both descents and recoils of a permutation. St000052The number of valleys of a Dyck path not on the x-axis. St000259The diameter of a connected graph. St000054The first entry of the permutation. St000141The maximum drop size of a permutation. St000989The number of final rises of a permutation. St000007The number of saliances of the permutation. St000546The number of global descents of a permutation. St000264The girth of a graph, which is not a tree. St000672The number of minimal elements in Bruhat order not less than the permutation. St000653The last descent of a permutation. St000794The mak of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000144The pyramid weight of the Dyck path. St000393The number of strictly increasing runs in a binary word. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001267The length of the Lyndon factorization of the binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St000203The number of external nodes of a binary tree. St000651The maximal size of a rise in a permutation. St000081The number of edges of a graph. St000446The disorder of a permutation. St000441The number of successions of a permutation. St000260The radius of a connected graph. St000031The number of cycles in the cycle decomposition of a permutation. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St000740The last entry of a permutation. St000454The largest eigenvalue of a graph if it is integral. St000018The number of inversions of a permutation. St000019The cardinality of the support of a permutation. St000648The number of 2-excedences of a permutation. St001645The pebbling number of a connected graph. St000161The sum of the sizes of the right subtrees of a binary tree. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000247The number of singleton blocks of a set partition. St000497The lcb statistic of a set partition. St000572The dimension exponent of a set partition. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000356The number of occurrences of the pattern 13-2. St001083The number of boxed occurrences of 132 in a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001820The size of the image of the pop stack sorting operator. St001933The largest multiplicity of a part in an integer partition. St000246The number of non-inversions of a permutation. St000237The number of small exceedances. St000153The number of adjacent cycles of a permutation. St001280The number of parts of an integer partition that are at least two. St000214The number of adjacencies of a permutation. St000474Dyson's crank of a partition. St001330The hat guessing number of a graph. St000164The number of short pairs. St000291The number of descents of a binary word. St000390The number of runs of ones in a binary word. St000292The number of ascents of a binary word. St001571The Cartan determinant of the integer partition. St001626The number of maximal proper sublattices of a lattice. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000993The multiplicity of the largest part of an integer partition. St001875The number of simple modules with projective dimension at most 1. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000843The decomposition number of a perfect matching. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000982The length of the longest constant subword. St000332The positive inversions of an alternating sign matrix. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001427The number of descents of a signed permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000297The number of leading ones in a binary word. St000392The length of the longest run of ones in a binary word. St001372The length of a longest cyclic run of ones of a binary word. St000738The first entry in the last row of a standard tableau. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000553The number of blocks of a graph. St000067The inversion number of the alternating sign matrix. St000065The number of entries equal to -1 in an alternating sign matrix. St000542The number of left-to-right-minima of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000864The number of circled entries of the shifted recording tableau of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001298The number of repeated entries in the Lehmer code of a permutation. St000015The number of peaks of a Dyck path. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St000080The rank of the poset. St000094The depth of an ordered tree. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000056The decomposition (or block) number of a permutation. St000084The number of subtrees. St000213The number of weak exceedances (also weak excedences) of a permutation. St000239The number of small weak excedances. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000443The number of long tunnels of a Dyck path. St000877The depth of the binary word interpreted as a path. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000021The number of descents of a permutation. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000155The number of exceedances (also excedences) of a permutation. St000224The sorting index of a permutation. St000331The number of upper interactions of a Dyck path. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000035The number of left outer peaks of a permutation. St000087The number of induced subgraphs. St000149The number of cells of the partition whose leg is zero and arm is odd. St000240The number of indices that are not small excedances. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000335The difference of lower and upper interactions. St000363The number of minimal vertex covers of a graph. St000389The number of runs of ones of odd length in a binary word. St000469The distinguishing number of a graph. St000485The length of the longest cycle of a permutation. St000636The hull number of a graph. St000742The number of big ascents of a permutation after prepending zero. St000926The clique-coclique number of a graph. St000990The first ascent of a permutation. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001110The 3-dynamic chromatic number of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001316The domatic number of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001587Half of the largest even part of an integer partition. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St001828The Euler characteristic of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St000004The major index of a permutation. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000057The Shynar inversion number of a standard tableau. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000120The number of left tunnels of a Dyck path. St000168The number of internal nodes of an ordered tree. St000171The degree of the graph. St000204The number of internal nodes of a binary tree. St000238The number of indices that are not small weak excedances. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000300The number of independent sets of vertices of a graph. St000301The number of facets of the stable set polytope of a graph. St000305The inverse major index of a permutation. St000310The minimal degree of a vertex of a graph. St000316The number of non-left-to-right-maxima of a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000778The metric dimension of a graph. St000797The stat`` of a permutation. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St000883The number of longest increasing subsequences of a permutation. St000931The number of occurrences of the pattern UUU in a Dyck path. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001357The maximal degree of a regular spanning subgraph of a graph. St001391The disjunction number of a graph. St001428The number of B-inversions of a signed permutation. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001843The Z-index of a set partition. St001869The maximum cut size of a graph. St001949The rigidity index of a graph. St000061The number of nodes on the left branch of a binary tree. St000083The number of left oriented leafs of a binary tree except the first one. St000216The absolute length of a permutation. St001480The number of simple summands of the module J^2/J^3. St001812The biclique partition number of a graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000619The number of cyclic descents of a permutation. St001060The distinguishing index of a graph. St000652The maximal difference between successive positions of a permutation. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001323The independence gap of a graph. St000150The floored half-sum of the multiplicities of a partition. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St000058The order of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000711The number of big exceedences of a permutation. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000924The number of topologically connected components of a perfect matching. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000359The number of occurrences of the pattern 23-1. St000731The number of double exceedences of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001488The number of corners of a skew partition. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000355The number of occurrences of the pattern 21-3. St001589The nesting number of a perfect matching. St000317The cycle descent number of a permutation. St001590The crossing number of a perfect matching. St000358The number of occurrences of the pattern 31-2. St000732The number of double deficiencies of a permutation. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001727The number of invisible inversions of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St001077The prefix exchange distance of a permutation. St001497The position of the largest weak excedence of a permutation. St001671Haglund's hag of a permutation. St000039The number of crossings of a permutation. St000217The number of occurrences of the pattern 312 in a permutation. St000236The number of cyclical small weak excedances. St000299The number of nonisomorphic vertex-induced subtrees. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000673The number of non-fixed points of a permutation. St000710The number of big deficiencies of a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001152The number of pairs with even minimum in a perfect matching. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001668The number of points of the poset minus the width of the poset. St001948The number of augmented double ascents of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St000907The number of maximal antichains of minimal length in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001863The number of weak excedances of a signed permutation. St001889The size of the connectivity set of a signed permutation. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001864The number of excedances of a signed permutation. St001894The depth of a signed permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000983The length of the longest alternating subword. St000352The Elizalde-Pak rank of a permutation. St001896The number of right descents of a signed permutations. St000075The orbit size of a standard tableau under promotion. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001870The number of positive entries followed by a negative entry in a signed permutation. St001893The flag descent of a signed permutation. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001712The number of natural descents of a standard Young tableau. St001960The number of descents of a permutation minus one if its first entry is not one. St000628The balance of a binary word. St000670The reversal length of a permutation. St000765The number of weak records in an integer composition. St000942The number of critical left to right maxima of the parking functions. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St000646The number of big ascents of a permutation. St000779The tier of a permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001624The breadth of a lattice. St000386The number of factors DDU in a Dyck path. St000884The number of isolated descents of a permutation. St000891The number of distinct diagonal sums of a permutation matrix. St001435The number of missing boxes in the first row.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!