searching the database
Your data matches 142 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000394
(load all 19 compositions to match this statistic)
(load all 19 compositions to match this statistic)
St000394: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 4
[1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Matching statistic: St001278
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
St001278: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra.
The statistic is also equal to the number of non-projective torsionless indecomposable modules in the corresponding Nakayama algebra.
See theorem 5.8. in the reference for a motivation.
Matching statistic: St000018
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 4
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 4
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000029
(load all 46 compositions to match this statistic)
(load all 46 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 5
Description
The depth of a permutation.
This is given by
$$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$.
Permutations with depth at most $1$ are called ''almost-increasing'' in [5].
Matching statistic: St000030
(load all 30 compositions to match this statistic)
(load all 30 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 4
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 4
Description
The sum of the descent differences of a permutations.
This statistic is given by
$$\pi \mapsto \sum_{i\in\operatorname{Des}(\pi)} (\pi_i-\pi_{i+1}).$$
See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Matching statistic: St000224
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 5
Description
The sorting index of a permutation.
The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols.
Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Matching statistic: St000476
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000476: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000476: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path.
For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which
is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is
$$
\sum_v (j_v-i_v)/2.
$$
Matching statistic: St000868
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000868: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000868: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 3
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 4
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 4
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
Description
The aid statistic in the sense of Shareshian-Wachs.
This is the number of admissible inversions [[St000866]] plus the number of descents [[St000021]]. This statistic was introduced by John Shareshian and Michelle L. Wachs in [1]. Theorem 4.1 states that the aid statistic together with the descent statistic is Euler-Mahonian.
Matching statistic: St001033
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001033: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001033: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 5
Description
The normalized area of the parallelogram polyomino associated with the Dyck path.
The area of the smallest parallelogram polyomino equals the semilength of the Dyck path. This statistic is therefore the area of the parallelogram polyomino minus the semilength of the Dyck path.
The area itself is equidistributed with [[St001034]] and with [[St000395]].
Matching statistic: St001579
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 4
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 4
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation.
This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by
$$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
The following 132 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001584The area statistic between a Dyck path and its bounce path. St001726The number of visible inversions of a permutation. St000004The major index of a permutation. St000065The number of entries equal to -1 in an alternating sign matrix. St000067The inversion number of the alternating sign matrix. St000081The number of edges of a graph. St000246The number of non-inversions of a permutation. St000332The positive inversions of an alternating sign matrix. St000491The number of inversions of a set partition. St000496The rcs statistic of a set partition. St000497The lcb statistic of a set partition. St000572The dimension exponent of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St001176The size of a partition minus its first part. St001397Number of pairs of incomparable elements in a finite poset. St001428The number of B-inversions of a signed permutation. St001843The Z-index of a set partition. St001869The maximum cut size of a graph. St000008The major index of the composition. St000305The inverse major index of a permutation. St000330The (standard) major index of a standard tableau. St000728The dimension of a set partition. St001311The cyclomatic number of a graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001341The number of edges in the center of a graph. St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000795The mad of a permutation. St000391The sum of the positions of the ones in a binary word. St000833The comajor index of a permutation. St000463The number of admissible inversions of a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000356The number of occurrences of the pattern 13-2. St000093The cardinality of a maximal independent set of vertices of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000961The shifted major index of a permutation. St000060The greater neighbor of the maximum. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St001115The number of even descents of a permutation. St000898The number of maximal entries in the last diagonal of the monotone triangle. St000223The number of nestings in the permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000456The monochromatic index of a connected graph. St000703The number of deficiencies of a permutation. St000355The number of occurrences of the pattern 21-3. St001727The number of invisible inversions of a permutation. St000359The number of occurrences of the pattern 23-1. St000358The number of occurrences of the pattern 31-2. St000454The largest eigenvalue of a graph if it is integral. St000702The number of weak deficiencies of a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000259The diameter of a connected graph. St001083The number of boxed occurrences of 132 in a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001645The pebbling number of a connected graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000039The number of crossings of a permutation. St001511The minimal number of transpositions needed to sort a permutation in either direction. St000095The number of triangles of a graph. St000672The number of minimal elements in Bruhat order not less than the permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000450The number of edges minus the number of vertices plus 2 of a graph. St000327The number of cover relations in a poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000080The rank of the poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000189The number of elements in the poset. St000528The height of a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001717The largest size of an interval in a poset. St001782The order of rowmotion on the set of order ideals of a poset. St000264The girth of a graph, which is not a tree. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001175The size of a partition minus the hook length of the base cell. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001498The normalised height of a Nakayama algebra with magnitude 1. St001527The cyclic permutation representation number of an integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000770The major index of an integer partition when read from bottom to top. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001060The distinguishing index of a graph. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St000907The number of maximal antichains of minimal length in a poset. St000455The second largest eigenvalue of a graph if it is integral. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001875The number of simple modules with projective dimension at most 1. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001821The sorting index of a signed permutation. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000516The number of stretching pairs of a permutation. St000871The number of very big ascents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001433The flag major index of a signed permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001867The number of alignments of type EN of a signed permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000422The energy of a graph, if it is integral. St001375The pancake length of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000742The number of big ascents of a permutation after prepending zero. St001394The genus of a permutation. St001438The number of missing boxes of a skew partition. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000451The length of the longest pattern of the form k 1 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!