searching the database
Your data matches 134 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001434
St001434: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[-1] => 0
[1,2] => 0
[1,-2] => 1
[-1,2] => 0
[-1,-2] => 1
[2,1] => 0
[2,-1] => 0
[-2,1] => 1
[-2,-1] => 1
[1,2,3] => 0
[1,2,-3] => 2
[1,-2,3] => 1
[1,-2,-3] => 3
[-1,2,3] => 0
[-1,2,-3] => 2
[-1,-2,3] => 1
[-1,-2,-3] => 3
[1,3,2] => 0
[1,3,-2] => 1
[1,-3,2] => 2
[1,-3,-2] => 3
[-1,3,2] => 0
[-1,3,-2] => 1
[-1,-3,2] => 2
[-1,-3,-2] => 3
[2,1,3] => 0
[2,1,-3] => 2
[2,-1,3] => 0
[2,-1,-3] => 2
[-2,1,3] => 1
[-2,1,-3] => 3
[-2,-1,3] => 1
[-2,-1,-3] => 3
[2,3,1] => 0
[2,3,-1] => 0
[2,-3,1] => 2
[2,-3,-1] => 2
[-2,3,1] => 1
[-2,3,-1] => 1
[-2,-3,1] => 3
[-2,-3,-1] => 3
[3,1,2] => 0
[3,1,-2] => 1
[3,-1,2] => 0
[3,-1,-2] => 1
[-3,1,2] => 2
[-3,1,-2] => 3
[-3,-1,2] => 2
[-3,-1,-2] => 3
Description
The number of negative sum pairs of a signed permutation.
The number of negative sum pairs of a signed permutation $\sigma$ is:
$$\operatorname{nsp}(\sigma)=\big|\{1\leq i < j\leq n \mid \sigma(i)+\sigma(j) < 0\}\big|,$$
see [1, Eq.(8.1)].
Matching statistic: St000008
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => 0
[-1] => 1 => [1] => 0
[1,2] => 00 => [2] => 0
[1,-2] => 01 => [1,1] => 1
[-1,2] => 10 => [1,1] => 1
[-1,-2] => 11 => [2] => 0
[2,1] => 00 => [2] => 0
[2,-1] => 01 => [1,1] => 1
[-2,1] => 10 => [1,1] => 1
[-2,-1] => 11 => [2] => 0
[1,2,3] => 000 => [3] => 0
[1,2,-3] => 001 => [2,1] => 2
[1,-2,3] => 010 => [1,1,1] => 3
[1,-2,-3] => 011 => [1,2] => 1
[-1,2,3] => 100 => [1,2] => 1
[-1,2,-3] => 101 => [1,1,1] => 3
[-1,-2,3] => 110 => [2,1] => 2
[-1,-2,-3] => 111 => [3] => 0
[1,3,2] => 000 => [3] => 0
[1,3,-2] => 001 => [2,1] => 2
[1,-3,2] => 010 => [1,1,1] => 3
[1,-3,-2] => 011 => [1,2] => 1
[-1,3,2] => 100 => [1,2] => 1
[-1,3,-2] => 101 => [1,1,1] => 3
[-1,-3,2] => 110 => [2,1] => 2
[-1,-3,-2] => 111 => [3] => 0
[2,1,3] => 000 => [3] => 0
[2,1,-3] => 001 => [2,1] => 2
[2,-1,3] => 010 => [1,1,1] => 3
[2,-1,-3] => 011 => [1,2] => 1
[-2,1,3] => 100 => [1,2] => 1
[-2,1,-3] => 101 => [1,1,1] => 3
[-2,-1,3] => 110 => [2,1] => 2
[-2,-1,-3] => 111 => [3] => 0
[2,3,1] => 000 => [3] => 0
[2,3,-1] => 001 => [2,1] => 2
[2,-3,1] => 010 => [1,1,1] => 3
[2,-3,-1] => 011 => [1,2] => 1
[-2,3,1] => 100 => [1,2] => 1
[-2,3,-1] => 101 => [1,1,1] => 3
[-2,-3,1] => 110 => [2,1] => 2
[-2,-3,-1] => 111 => [3] => 0
[3,1,2] => 000 => [3] => 0
[3,1,-2] => 001 => [2,1] => 2
[3,-1,2] => 010 => [1,1,1] => 3
[3,-1,-2] => 011 => [1,2] => 1
[-3,1,2] => 100 => [1,2] => 1
[-3,1,-2] => 101 => [1,1,1] => 3
[-3,-1,2] => 110 => [2,1] => 2
[-3,-1,-2] => 111 => [3] => 0
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000005
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => [1,0]
=> 0
[-1] => 1 => [1] => [1,0]
=> 0
[1,2] => 00 => [2] => [1,1,0,0]
=> 0
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 1
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 1
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 0
[2,1] => 00 => [2] => [1,1,0,0]
=> 0
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 1
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 1
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
Description
The bounce statistic of a Dyck path.
The '''bounce path''' $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called '''bounce points''', and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
Matching statistic: St000006
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => [1,0]
=> 0
[-1] => 1 => [1] => [1,0]
=> 0
[1,2] => 00 => [2] => [1,1,0,0]
=> 0
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 1
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 1
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 0
[2,1] => 00 => [2] => [1,1,0,0]
=> 0
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 1
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 1
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see [[St000012]]).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose ''arm length'' is one larger or equal to its ''leg length''.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Matching statistic: St000081
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => ([],1)
=> 0
[-1] => 1 => [1] => ([],1)
=> 0
[1,2] => 00 => [2] => ([],2)
=> 0
[1,-2] => 01 => [1,1] => ([(0,1)],2)
=> 1
[-1,2] => 10 => [1,1] => ([(0,1)],2)
=> 1
[-1,-2] => 11 => [2] => ([],2)
=> 0
[2,1] => 00 => [2] => ([],2)
=> 0
[2,-1] => 01 => [1,1] => ([(0,1)],2)
=> 1
[-2,1] => 10 => [1,1] => ([(0,1)],2)
=> 1
[-2,-1] => 11 => [2] => ([],2)
=> 0
[1,2,3] => 000 => [3] => ([],3)
=> 0
[1,2,-3] => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,-2,3] => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-2,-3] => 011 => [1,2] => ([(1,2)],3)
=> 1
[-1,2,3] => 100 => [1,2] => ([(1,2)],3)
=> 1
[-1,2,-3] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-2,3] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[-1,-2,-3] => 111 => [3] => ([],3)
=> 0
[1,3,2] => 000 => [3] => ([],3)
=> 0
[1,3,-2] => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,-3,2] => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-3,-2] => 011 => [1,2] => ([(1,2)],3)
=> 1
[-1,3,2] => 100 => [1,2] => ([(1,2)],3)
=> 1
[-1,3,-2] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-3,2] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[-1,-3,-2] => 111 => [3] => ([],3)
=> 0
[2,1,3] => 000 => [3] => ([],3)
=> 0
[2,1,-3] => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,-1,3] => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-1,-3] => 011 => [1,2] => ([(1,2)],3)
=> 1
[-2,1,3] => 100 => [1,2] => ([(1,2)],3)
=> 1
[-2,1,-3] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-1,3] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[-2,-1,-3] => 111 => [3] => ([],3)
=> 0
[2,3,1] => 000 => [3] => ([],3)
=> 0
[2,3,-1] => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,-3,1] => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-3,-1] => 011 => [1,2] => ([(1,2)],3)
=> 1
[-2,3,1] => 100 => [1,2] => ([(1,2)],3)
=> 1
[-2,3,-1] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-3,1] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[-2,-3,-1] => 111 => [3] => ([],3)
=> 0
[3,1,2] => 000 => [3] => ([],3)
=> 0
[3,1,-2] => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,-1,2] => 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-1,-2] => 011 => [1,2] => ([(1,2)],3)
=> 1
[-3,1,2] => 100 => [1,2] => ([(1,2)],3)
=> 1
[-3,1,-2] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,-1,2] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[-3,-1,-2] => 111 => [3] => ([],3)
=> 0
Description
The number of edges of a graph.
Matching statistic: St001161
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => [1,0]
=> 0
[-1] => 1 => [1] => [1,0]
=> 0
[1,2] => 00 => [2] => [1,1,0,0]
=> 0
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 1
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 1
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 0
[2,1] => 00 => [2] => [1,1,0,0]
=> 0
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 1
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 1
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
Description
The major index north count of a Dyck path.
The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]].
The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
Matching statistic: St000946
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000946: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000946: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => [1,0]
=> ? ∊ {0,0}
[-1] => 1 => [1] => [1,0]
=> ? ∊ {0,0}
[1,2] => 00 => [2] => [1,1,0,0]
=> 1
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 0
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 0
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 1
[2,1] => 00 => [2] => [1,1,0,0]
=> 1
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 0
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 0
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 1
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 3
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 1
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 3
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 1
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 3
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 1
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 3
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 1
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 3
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 1
[3,2,1] => 000 => [3] => [1,1,1,0,0,0]
=> 1
[3,2,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 3
Description
The sum of the skew hook positions in a Dyck path.
A skew hook is an occurrence of a down step followed by two up steps or of an up step followed by a down step.
Write $U_i$ for the $i$-th up step and $D_j$ for the $j$-th down step in the Dyck path. Then the skew hook set is the set $$H = \{j: U_{i−1} U_i D_j \text{ is a skew hook}\} \cup \{i: D_{i−1} D_i U_j\text{ is a skew hook}\}.$$
This statistic is the sum of all elements in $H$.
Matching statistic: St000947
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0 => [1] => [1,0]
=> ? ∊ {0,0}
[-1] => 1 => [1] => [1,0]
=> ? ∊ {0,0}
[1,2] => 00 => [2] => [1,1,0,0]
=> 0
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 1
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 1
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 0
[2,1] => 00 => [2] => [1,1,0,0]
=> 0
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 1
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 1
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 1
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 2
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,2,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 2
Description
The major index east count of a Dyck path.
The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]].
The '''major index east count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}$.
Matching statistic: St001232
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00267: Signed permutations —signs⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 65%●distinct values known / distinct values provided: 57%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 65%●distinct values known / distinct values provided: 57%
Values
[1] => 0 => [1] => [1,0]
=> 0
[-1] => 1 => [1] => [1,0]
=> 0
[1,2] => 00 => [2] => [1,1,0,0]
=> 0
[1,-2] => 01 => [1,1] => [1,0,1,0]
=> 1
[-1,2] => 10 => [1,1] => [1,0,1,0]
=> 1
[-1,-2] => 11 => [2] => [1,1,0,0]
=> 0
[2,1] => 00 => [2] => [1,1,0,0]
=> 0
[2,-1] => 01 => [1,1] => [1,0,1,0]
=> 1
[-2,1] => 10 => [1,1] => [1,0,1,0]
=> 1
[-2,-1] => 11 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[1,-2,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[1,-2,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,2,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,2,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-1,-2,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-1,-2,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[1,3,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[1,-3,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[1,-3,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,3,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-1,3,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-1,-3,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-1,-3,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,3] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,1,-3] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[2,-1,3] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[2,-1,-3] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,1,3] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,1,-3] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-2,-1,3] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-2,-1,-3] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[2,3,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[2,-3,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[2,-3,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,3,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-2,3,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-2,-3,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-2,-3,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,-2] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[3,-1,2] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[3,-1,-2] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,1,2] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,1,-2] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-3,-1,2] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-3,-1,-2] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => 000 => [3] => [1,1,1,0,0,0]
=> 0
[3,2,-1] => 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[3,-2,1] => 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[3,-2,-1] => 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,2,1] => 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[-3,2,-1] => 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3}
[-3,-2,1] => 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[-3,-2,-1] => 111 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => 0000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,-4] => 0001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,2,-3,4] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,-3,-4] => 0011 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,-2,3,4] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,3,-4] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,-3,4] => 0110 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[-1,2,-3,4] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,-3,-4] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-2,3,-4] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,-4,3] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,4,3] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,4,-3] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,-4,3] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,-4,-3] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-2,4,-3] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,-2,4] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-3,2,4] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-3,2,-4] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,3,-2,4] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,3,-2,-4] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-3,2,-4] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,-4,2] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-3,4,2] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-3,4,-2] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,3,-4,2] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,3,-4,-2] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-3,4,-2] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,-2,3] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-4,2,3] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-4,2,-3] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,4,-2,3] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,4,-2,-3] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-4,2,-3] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,-3,2] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-4,3,2] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-4,3,-2] => 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,4,-3,2] => 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,4,-3,-2] => 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-4,3,-2] => 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,-3,4] => 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,-1,3,4] => 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000567
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00323: Integer partitions —Loehr-Warrington inverse⟶ Integer partitions
St000567: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00323: Integer partitions —Loehr-Warrington inverse⟶ Integer partitions
St000567: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1] => []
=> ?
=> ? ∊ {0,0}
[-1] => [1]
=> [1]
=> ? ∊ {0,0}
[1,2] => []
=> ?
=> ? ∊ {0,0,0,1,1}
[1,-2] => [1]
=> [1]
=> ? ∊ {0,0,0,1,1}
[-1,2] => [1]
=> [1]
=> ? ∊ {0,0,0,1,1}
[-1,-2] => [1,1]
=> [2]
=> 0
[2,1] => []
=> ?
=> ? ∊ {0,0,0,1,1}
[2,-1] => [2]
=> [1,1]
=> 1
[-2,1] => [2]
=> [1,1]
=> 1
[-2,-1] => []
=> ?
=> ? ∊ {0,0,0,1,1}
[1,2,3] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [2]
=> 0
[-1,2,3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [2]
=> 0
[-1,-2,3] => [1,1]
=> [2]
=> 0
[-1,-2,-3] => [1,1,1]
=> [3]
=> 0
[1,3,2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [1,1]
=> 1
[1,-3,2] => [2]
=> [1,1]
=> 1
[1,-3,-2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [1,1,1]
=> 3
[-1,-3,2] => [2,1]
=> [1,1,1]
=> 3
[-1,-3,-2] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[2,1,3] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [1,1]
=> 1
[2,-1,-3] => [2,1]
=> [1,1,1]
=> 3
[-2,1,3] => [2]
=> [1,1]
=> 1
[-2,1,-3] => [2,1]
=> [1,1,1]
=> 3
[-2,-1,3] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[2,3,1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [2,1]
=> 2
[2,-3,1] => [3]
=> [2,1]
=> 2
[2,-3,-1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [2,1]
=> 2
[-2,3,-1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-2,-3,1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [2,1]
=> 2
[3,1,2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [2,1]
=> 2
[3,-1,2] => [3]
=> [2,1]
=> 2
[3,-1,-2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [2,1]
=> 2
[-3,1,-2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-3,-1,2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [2,1]
=> 2
[3,2,1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [1,1]
=> 1
[3,-2,1] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [1,1,1]
=> 3
[-3,2,1] => [2]
=> [1,1]
=> 1
[-3,2,-1] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [1,1,1]
=> 3
[-3,-2,-1] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3}
[1,2,3,4] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,3,-4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,-3,4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,-3,-4] => [1,1]
=> [2]
=> 0
[1,-2,3,4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,3,-4] => [1,1]
=> [2]
=> 0
[1,-2,-3,4] => [1,1]
=> [2]
=> 0
[1,-2,-3,-4] => [1,1,1]
=> [3]
=> 0
[-1,2,3,4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,3,-4] => [1,1]
=> [2]
=> 0
[-1,2,-3,4] => [1,1]
=> [2]
=> 0
[-1,2,-3,-4] => [1,1,1]
=> [3]
=> 0
[-1,-2,3,4] => [1,1]
=> [2]
=> 0
[-1,-2,3,-4] => [1,1,1]
=> [3]
=> 0
[-1,-2,-3,4] => [1,1,1]
=> [3]
=> 0
[-1,-2,-3,-4] => [1,1,1,1]
=> [4]
=> 0
[1,2,4,3] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,-3] => [2]
=> [1,1]
=> 1
[1,2,-4,3] => [2]
=> [1,1]
=> 1
[1,2,-4,-3] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,4,3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-2,4,-3] => [2,1]
=> [1,1,1]
=> 3
[1,-2,-4,3] => [2,1]
=> [1,1,1]
=> 3
[1,-2,-4,-3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,4,3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,2,4,-3] => [2,1]
=> [1,1,1]
=> 3
[-1,2,-4,3] => [2,1]
=> [1,1,1]
=> 3
[-1,2,-4,-3] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-2,4,3] => [1,1]
=> [2]
=> 0
[-1,-2,4,-3] => [2,1,1]
=> [3,1]
=> 3
[-1,-2,-4,3] => [2,1,1]
=> [3,1]
=> 3
[-1,-2,-4,-3] => [1,1]
=> [2]
=> 0
[1,3,2,4] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,-4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,-2,4] => [2]
=> [1,1]
=> 1
[1,3,-2,-4] => [2,1]
=> [1,1,1]
=> 3
[1,-3,-2,4] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,-3,-2,-4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,3,2,4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[-1,-3,-2,4] => [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,-4,-2] => []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The sum of the products of all pairs of parts.
This is the evaluation of the second elementary symmetric polynomial which is equal to
$$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$
for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1].
This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
The following 124 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000472The sum of the ascent bottoms of a permutation. St000493The los statistic of a set partition. St000494The number of inversions of distance at most 3 of a permutation. St000495The number of inversions of distance at most 2 of a permutation. St000498The lcs statistic of a set partition. St000564The number of occurrences of the pattern {{1},{2}} in a set partition. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000578The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton. St000794The mak of a permutation. St000795The mad of a permutation. St000874The position of the last double rise in a Dyck path. St000984The number of boxes below precisely one peak. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001721The degree of a binary word. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000770The major index of an integer partition when read from bottom to top. St000934The 2-degree of an integer partition. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000937The number of positive values of the symmetric group character corresponding to the partition. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001875The number of simple modules with projective dimension at most 1. St000478Another weight of a partition according to Alladi. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001568The smallest positive integer that does not appear twice in the partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000418The number of Dyck paths that are weakly below a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000420The number of Dyck paths that are weakly above a Dyck path. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000438The position of the last up step in a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000508Eigenvalues of the random-to-random operator acting on a simple module. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000674The number of hills of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000931The number of occurrences of the pattern UUU in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000978The sum of the positions of double down-steps of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000981The length of the longest zigzag subpath. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001959The product of the heights of the peaks of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!