searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001531
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
St001531: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 7
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> 14
[1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> 14
[1,1,1,0,1,0,0,0]
=> 25
[1,1,1,1,0,0,0,0]
=> 40
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 7
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> 14
[1,0,1,1,1,0,0,0,1,0]
=> 7
[1,0,1,1,1,0,0,1,0,0]
=> 14
[1,0,1,1,1,0,1,0,0,0]
=> 25
[1,0,1,1,1,1,0,0,0,0]
=> 40
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> 14
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> 28
[1,1,0,1,1,0,0,0,1,0]
=> 14
[1,1,0,1,1,0,0,1,0,0]
=> 28
[1,1,0,1,1,0,1,0,0,0]
=> 50
[1,1,0,1,1,1,0,0,0,0]
=> 80
[1,1,1,0,0,0,1,0,1,0]
=> 7
Description
Number of partial orders contained in the poset determined by the Dyck path.
A Dyck path determines a poset, where the relations correspond to boxes under the path (seen as a North-East path). This statistic is closely related to unicellular LLT polynomials and their e-expansion.
Matching statistic: St001232
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 10%●distinct values known / distinct values provided: 5%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 5% ●values known / values provided: 10%●distinct values known / distinct values provided: 5%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {4,7}
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {4,7}
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,7,7,8,14,14,25,40}
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,7,7,7,8,8,8,8,14,14,14,14,14,14,16,25,25,28,28,28,40,40,49,50,50,80,80,89,145,145,238,357}
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,7,7,7,7,8,8,8,8,8,8,8,8,8,8,14,14,14,14,14,14,14,14,14,14,14,14,16,16,16,16,16,25,25,25,28,28,28,28,28,28,28,28,28,28,28,28,32,40,40,40,49,49,49,50,50,50,50,50,50,56,56,56,56,80,80,80,80,80,80,89,89,98,98,98,100,100,100,145,145,145,145,160,160,160,175,175,178,178,238,238,280,280,290,290,290,290,317,357,357,476,476,515,515,526,714,714,850,859,859,1309,1309,1427,2194,2194,3377,4824}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!