Your data matches 53 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000057
St000057: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1,2]]
=> 0
[[1],[2]]
=> 0
[[1,2,3]]
=> 0
[[1,3],[2]]
=> 0
[[1,2],[3]]
=> 1
[[1],[2],[3]]
=> 0
[[1,2,3,4]]
=> 0
[[1,3,4],[2]]
=> 0
[[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> 2
[[1,3],[2,4]]
=> 0
[[1,2],[3,4]]
=> 1
[[1,4],[2],[3]]
=> 0
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 2
[[1],[2],[3],[4]]
=> 0
[[1,2,3,4,5]]
=> 0
[[1,3,4,5],[2]]
=> 0
[[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> 2
[[1,2,3,4],[5]]
=> 3
[[1,3,5],[2,4]]
=> 0
[[1,2,5],[3,4]]
=> 1
[[1,3,4],[2,5]]
=> 1
[[1,2,4],[3,5]]
=> 2
[[1,2,3],[4,5]]
=> 3
[[1,4,5],[2],[3]]
=> 0
[[1,3,5],[2],[4]]
=> 1
[[1,2,5],[3],[4]]
=> 2
[[1,3,4],[2],[5]]
=> 2
[[1,2,4],[3],[5]]
=> 3
[[1,2,3],[4],[5]]
=> 4
[[1,4],[2,5],[3]]
=> 0
[[1,3],[2,5],[4]]
=> 1
[[1,2],[3,5],[4]]
=> 2
[[1,3],[2,4],[5]]
=> 2
[[1,2],[3,4],[5]]
=> 3
[[1,5],[2],[3],[4]]
=> 0
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 2
[[1,2],[3],[4],[5]]
=> 3
[[1],[2],[3],[4],[5]]
=> 0
[[1,2,3,4,5,6]]
=> 0
[[1,3,4,5,6],[2]]
=> 0
[[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> 2
[[1,2,3,4,6],[5]]
=> 3
[[1,2,3,4,5],[6]]
=> 4
[[1,3,5,6],[2,4]]
=> 0
Description
The Shynar inversion number of a standard tableau. Shynar's inversion number is the number of inversion pairs in a standard Young tableau, where an inversion pair is defined as a pair of integers (x,y) such that y > x and y appears strictly southwest of x in the tableau.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
St000018: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => 5
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000463
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
St000463: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => 5
Description
The number of admissible inversions of a permutation. Let $w = w_1,w_2,\dots,w_k$ be a word of length $k$ with distinct letters from $[n]$. An admissible inversion of $w$ is a pair $(w_i,w_j)$ such that $1\leq i < j\leq k$ and $w_i > w_j$ that satisfies either of the following conditions: $1 < i$ and $w_{i−1} < w_i$ or there is some $l$ such that $i < l < j$ and $w_i < w_l$.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
St001511: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => 5
Description
The minimal number of transpositions needed to sort a permutation in either direction. For a permutation $\sigma$, this is $\min\{ \operatorname{inv}(\sigma),\operatorname{inv}(\tau)\}$ where $\tau$ is the reverse permutation sending $i$ to $\sigma(n+1-i)$.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
St001579: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => 5
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by $$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
Matching statistic: St001841
Mp00284: Standard tableaux rowsSet partitions
Mp00112: Set partitions complementSet partitions
St001841: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> 0
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> 0
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> 0
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 2
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 0
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 3
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> 2
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 0
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> 3
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> 2
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> 2
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 0
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 4
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> 3
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 2
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 2
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 0
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> 3
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 0
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 3
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 2
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 0
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 0
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> 4
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> 3
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> 2
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> 0
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> 5
Description
The number of inversions of a set partition. The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$. A pair $(i,j)$ is an inversion of the word $w$ if $w_i > w_j$.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St000004: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [3,1,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => [3,4,1,2] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => [4,1,2,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => [3,1,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => [1,4,2,3] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => [3,1,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => [3,4,5,1,2] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => [4,5,1,2,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => [5,3,1,2,4] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => [1,5,2,3,4] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => [3,4,1,2,5] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => [4,1,2,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => [4,1,5,2,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => [5,3,1,2,4] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => [1,5,2,3,4] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [3,4,1,2,5] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [4,1,2,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => [1,4,5,2,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => [3,5,1,2,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => [3,1,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => [1,2,5,3,4] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [1,4,2,3,5] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [3,1,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => [3,4,5,6,1,2] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => [4,5,6,1,2,3] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => [5,6,1,2,3,4] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => [5,6,3,1,2,4] => 5
Description
The major index of a permutation. This is the sum of the positions of its descents, $$\operatorname{maj}(\sigma) = \sum_{\sigma(i) > \sigma(i+1)} i.$$ Its generating function is $[n]_q! = [1]_q \cdot [2]_q \dots [n]_q$ for $[k]_q = 1 + q + q^2 + \dots q^{k-1}$. A statistic equidistributed with the major index is called '''Mahonian statistic'''.
Matching statistic: St000081
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00160: Permutations graph of inversionsGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> 0
[[1],[2]]
=> [2,1] => [1,2] => ([],2)
=> 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => ([(1,2)],3)
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => ([],3)
=> 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => ([],3)
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => ([(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => ([],4)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => ([],4)
=> 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => ([],4)
=> 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => ([],5)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => ([],5)
=> 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => ([],5)
=> 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => ([],6)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 5
Description
The number of edges of a graph.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00069: Permutations complementPermutations
St000246: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [2,1] => 0
[[1],[2]]
=> [2,1] => [1,2] => [2,1] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [3,1,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => [3,2,1] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [3,2,1] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => [4,2,1,3] => 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => [4,3,1,2] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => [4,3,2,1] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => [4,2,3,1] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => [4,3,2,1] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => [4,1,3,2] => 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => [4,2,3,1] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => [4,3,2,1] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [4,3,2,1] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => [5,3,2,1,4] => 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => [5,3,1,4,2] => 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => [5,4,1,3,2] => 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => [5,3,2,4,1] => 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => [5,4,2,3,1] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => [5,2,1,4,3] => 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => [5,3,1,4,2] => 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => [5,4,1,3,2] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [5,3,2,4,1] => 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [5,4,2,3,1] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => [5,2,4,1,3] => 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => [5,3,4,1,2] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => [5,3,4,2,1] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => [5,1,4,3,2] => 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [5,2,4,3,1] => 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [5,3,4,2,1] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => [6,4,3,2,1,5] => 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => [6,5,3,2,1,4] => 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => [6,5,4,2,1,3] => 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => [6,5,4,3,1,2] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => [6,4,2,1,5,3] => 5
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Matching statistic: St001341
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00160: Permutations graph of inversionsGraphs
St001341: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> 0
[[1],[2]]
=> [2,1] => [1,2] => ([],2)
=> 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => ([(1,2)],3)
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => ([],3)
=> 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => ([],3)
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => ([(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => ([],4)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => ([],4)
=> 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => ([],4)
=> 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => ([],5)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => ([],5)
=> 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => ([],5)
=> 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 3
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => ([],6)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 5
Description
The number of edges in the center of a graph. The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
The following 43 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001397Number of pairs of incomparable elements in a finite poset. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000795The mad of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000961The shifted major index of a permutation. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001428The number of B-inversions of a signed permutation. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001964The interval resolution global dimension of a poset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000456The monochromatic index of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St001820The size of the image of the pop stack sorting operator. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001060The distinguishing index of a graph. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001862The number of crossings of a signed permutation. St000632The jump number of the poset. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001868The number of alignments of type NE of a signed permutation. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St000264The girth of a graph, which is not a tree. St001438The number of missing boxes of a skew partition. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation.