searching the database
Your data matches 56 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001585
St001585: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 2
['B',2]
=> 2
['G',2]
=> 2
['A',3]
=> 16
['B',3]
=> 42
['C',3]
=> 42
['A',4]
=> 768
['B',4]
=> 24024
['C',4]
=> 24024
['D',4]
=> 2316
['F',4]
=> 2144892
['A',5]
=> 292864
['B',5]
=> 701149020
['C',5]
=> 701149020
['D',5]
=> 12985968
Description
The number of reduced decompositions of the longest element of the Weyl group of the given Cartan type.
Equivalently, this is the number of chains in the weak order from the identity to the longest element.
In type $A_n$, this is
$$
\binom{n+1}{2}!/(1^n 3^{n-1} \dots (2n-1)^1).
$$
In type $B_n$ and $C_n$ this is
$$
(n^2)!\prod_{k=1}^{n-1} k! / \prod_{k=n}^{2n-1} k!.
$$
Matching statistic: St000269
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 42
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {16,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {16,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The number of acyclic orientations of a graph.
Matching statistic: St000270
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 16
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,4),(1,9),(2,3),(2,8),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(2,7),(2,9),(2,10),(3,6),(3,8),(3,10),(4,5),(4,8),(4,9),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(4,7),(4,8),(4,11),(4,12),(4,15),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,9),(5,13),(5,14),(5,15),(5,19),(5,20),(5,21),(5,22),(5,23),(6,9),(6,10),(6,13),(6,14),(6,16),(6,17),(6,18),(6,20),(6,23),(7,8),(7,11),(7,12),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,10),(8,11),(8,12),(8,16),(8,17),(8,18),(8,19),(8,22),(8,23),(9,13),(9,14),(9,15),(9,17),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,21),(19,22),(20,21),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(1,4),(1,10),(1,14),(2,3),(2,9),(2,13),(3,7),(3,9),(3,13),(4,8),(4,10),(4,14),(5,7),(5,9),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,13),(8,14),(9,12),(9,13),(10,12),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14)],15)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(2,3),(2,9),(2,14),(2,15),(2,19),(3,9),(3,13),(3,14),(3,15),(3,19),(4,7),(4,8),(4,11),(4,15),(4,16),(4,18),(4,19),(5,6),(5,8),(5,10),(5,14),(5,16),(5,18),(5,19),(6,8),(6,10),(6,14),(6,16),(6,17),(6,18),(6,19),(7,8),(7,11),(7,15),(7,16),(7,17),(7,18),(7,19),(8,16),(8,17),(8,18),(8,19),(9,12),(9,13),(9,14),(9,15),(9,17),(9,19),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(13,14),(13,15),(13,16),(13,18),(13,19),(14,17),(14,19),(15,17),(15,19),(16,17),(16,18),(17,18),(17,19),(18,19)],20)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The number of forests contained in a graph.
That is, for a graph $G = (V,E)$ with vertices $V$ and edges $E$, the number of subsets $E' \subseteq E$ for which the subgraph $(V,E')$ is acyclic.
If $T_G(x,y)$ is the Tutte polynomial [2] of $G$, then the number of forests contained in $G$ is given by $T_G(2,1)$.
Matching statistic: St000343
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 16
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,4),(1,9),(2,3),(2,8),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(2,7),(2,9),(2,10),(3,6),(3,8),(3,10),(4,5),(4,8),(4,9),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(4,7),(4,8),(4,11),(4,12),(4,15),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,9),(5,13),(5,14),(5,15),(5,19),(5,20),(5,21),(5,22),(5,23),(6,9),(6,10),(6,13),(6,14),(6,16),(6,17),(6,18),(6,20),(6,23),(7,8),(7,11),(7,12),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,10),(8,11),(8,12),(8,16),(8,17),(8,18),(8,19),(8,22),(8,23),(9,13),(9,14),(9,15),(9,17),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,21),(19,22),(20,21),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(1,4),(1,10),(1,14),(2,3),(2,9),(2,13),(3,7),(3,9),(3,13),(4,8),(4,10),(4,14),(5,7),(5,9),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,13),(8,14),(9,12),(9,13),(10,12),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14)],15)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(2,3),(2,9),(2,14),(2,15),(2,19),(3,9),(3,13),(3,14),(3,15),(3,19),(4,7),(4,8),(4,11),(4,15),(4,16),(4,18),(4,19),(5,6),(5,8),(5,10),(5,14),(5,16),(5,18),(5,19),(6,8),(6,10),(6,14),(6,16),(6,17),(6,18),(6,19),(7,8),(7,11),(7,15),(7,16),(7,17),(7,18),(7,19),(8,16),(8,17),(8,18),(8,19),(9,12),(9,13),(9,14),(9,15),(9,17),(9,19),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(13,14),(13,15),(13,16),(13,18),(13,19),(14,17),(14,19),(15,17),(15,19),(16,17),(16,18),(17,18),(17,19),(18,19)],20)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The number of spanning subgraphs of a graph.
This is the number of subsets of the edge set of the graph, or the evaluation of the Tutte polynomial at $x=y=2$.
Matching statistic: St000948
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 42
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The chromatic discriminant of a graph.
The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$.
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at $q$,
(2) Maximum $G$-parking functions relative to $q$,
(3) Minimal $q$-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$,
(6) Multilinear Lyndon heaps on $G$.
In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Matching statistic: St000972
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 16
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,4),(1,9),(2,3),(2,8),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(2,7),(2,9),(2,10),(3,6),(3,8),(3,10),(4,5),(4,8),(4,9),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(4,7),(4,8),(4,11),(4,12),(4,15),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,9),(5,13),(5,14),(5,15),(5,19),(5,20),(5,21),(5,22),(5,23),(6,9),(6,10),(6,13),(6,14),(6,16),(6,17),(6,18),(6,20),(6,23),(7,8),(7,11),(7,12),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,10),(8,11),(8,12),(8,16),(8,17),(8,18),(8,19),(8,22),(8,23),(9,13),(9,14),(9,15),(9,17),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,21),(19,22),(20,21),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(1,4),(1,10),(1,14),(2,3),(2,9),(2,13),(3,7),(3,9),(3,13),(4,8),(4,10),(4,14),(5,7),(5,9),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,13),(8,14),(9,12),(9,13),(10,12),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14)],15)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(2,3),(2,9),(2,14),(2,15),(2,19),(3,9),(3,13),(3,14),(3,15),(3,19),(4,7),(4,8),(4,11),(4,15),(4,16),(4,18),(4,19),(5,6),(5,8),(5,10),(5,14),(5,16),(5,18),(5,19),(6,8),(6,10),(6,14),(6,16),(6,17),(6,18),(6,19),(7,8),(7,11),(7,15),(7,16),(7,17),(7,18),(7,19),(8,16),(8,17),(8,18),(8,19),(9,12),(9,13),(9,14),(9,15),(9,17),(9,19),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(13,14),(13,15),(13,16),(13,18),(13,19),(14,17),(14,19),(15,17),(15,19),(16,17),(16,18),(17,18),(17,19),(18,19)],20)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The composition number of a graph.
This is the number of set partitions of the vertex set of the graph, such that the subgraph induced by each block is connected.
Matching statistic: St001474
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 16
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,4),(1,9),(2,3),(2,8),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(2,3),(2,6),(2,14),(2,15),(3,6),(3,10),(3,14),(3,15),(4,5),(4,8),(4,9),(4,12),(4,13),(4,15),(5,8),(5,9),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,12),(6,14),(6,15),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(2,7),(2,9),(2,10),(3,6),(3,8),(3,10),(4,5),(4,8),(4,9),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(4,7),(4,8),(4,11),(4,12),(4,15),(4,19),(4,20),(4,21),(4,22),(4,23),(5,6),(5,9),(5,13),(5,14),(5,15),(5,19),(5,20),(5,21),(5,22),(5,23),(6,9),(6,10),(6,13),(6,14),(6,16),(6,17),(6,18),(6,20),(6,23),(7,8),(7,11),(7,12),(7,15),(7,18),(7,19),(7,20),(7,21),(7,22),(7,23),(8,10),(8,11),(8,12),(8,16),(8,17),(8,18),(8,19),(8,22),(8,23),(9,13),(9,14),(9,15),(9,17),(9,19),(9,20),(9,21),(9,22),(9,23),(10,12),(10,14),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(10,22),(10,23),(11,12),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(12,16),(12,17),(12,18),(12,19),(12,20),(12,21),(12,22),(12,23),(13,14),(13,15),(13,16),(13,17),(13,18),(13,19),(13,20),(13,21),(13,22),(13,23),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(17,19),(17,20),(17,21),(17,22),(17,23),(18,19),(18,20),(18,21),(18,22),(18,23),(19,21),(19,22),(20,21),(20,23),(21,22),(21,23),(22,23)],24)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(1,4),(1,10),(1,14),(2,3),(2,9),(2,13),(3,7),(3,9),(3,13),(4,8),(4,10),(4,14),(5,7),(5,9),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,13),(8,14),(9,12),(9,13),(10,12),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14)],15)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(2,3),(2,4),(2,10),(2,22),(2,23),(2,24),(3,4),(3,9),(3,10),(3,22),(3,23),(3,24),(4,8),(4,9),(4,10),(4,19),(4,22),(4,23),(4,24),(5,6),(5,7),(5,12),(5,13),(5,17),(5,18),(5,20),(5,21),(5,23),(5,24),(6,7),(6,12),(6,13),(6,14),(6,15),(6,17),(6,18),(6,19),(6,21),(6,24),(7,12),(7,13),(7,15),(7,16),(7,17),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,10),(8,11),(8,16),(8,17),(8,19),(8,20),(8,21),(8,22),(8,23),(8,24),(9,10),(9,11),(9,16),(9,17),(9,20),(9,21),(9,22),(9,23),(9,24),(10,11),(10,14),(10,18),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(11,22),(11,23),(11,24),(12,13),(12,15),(12,16),(12,17),(12,18),(12,20),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(13,23),(13,24),(14,15),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(14,22),(14,23),(14,24),(15,16),(15,17),(15,18),(15,19),(15,20),(15,21),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,20),(16,21),(16,22),(16,23),(16,24),(17,18),(17,19),(17,20),(17,21),(18,20),(18,21),(18,22),(18,23),(18,24),(19,20),(19,21),(19,22),(19,23),(19,24),(20,21),(20,23),(20,24),(21,24),(22,23),(22,24),(23,24)],25)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(2,3),(2,9),(2,14),(2,15),(2,19),(3,9),(3,13),(3,14),(3,15),(3,19),(4,7),(4,8),(4,11),(4,15),(4,16),(4,18),(4,19),(5,6),(5,8),(5,10),(5,14),(5,16),(5,18),(5,19),(6,8),(6,10),(6,14),(6,16),(6,17),(6,18),(6,19),(7,8),(7,11),(7,15),(7,16),(7,17),(7,18),(7,19),(8,16),(8,17),(8,18),(8,19),(9,12),(9,13),(9,14),(9,15),(9,17),(9,19),(10,12),(10,13),(10,14),(10,16),(10,17),(10,18),(10,19),(11,12),(11,13),(11,15),(11,16),(11,17),(11,18),(11,19),(12,13),(12,14),(12,15),(12,16),(12,17),(12,18),(12,19),(13,14),(13,15),(13,16),(13,18),(13,19),(14,17),(14,19),(15,17),(15,19),(16,17),(16,18),(17,18),(17,19),(18,19)],20)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (2,-1).
Matching statistic: St001475
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 42
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0).
Matching statistic: St000146
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 25%●distinct values known / distinct values provided: 18%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 25%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {16,42,42}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {16,42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {16,42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The Andrews-Garvan crank of a partition.
If $\pi$ is a partition, let $l(\pi)$ be its length (number of parts), $\omega(\pi)$ be the number of parts equal to 1, and $\mu(\pi)$ be the number of parts larger than $\omega(\pi)$. The crank is then defined by
$$
c(\pi) =
\begin{cases}
l(\pi) &\text{if \(\omega(\pi)=0\)}\\
\mu(\pi) - \omega(\pi) &\text{otherwise}.
\end{cases}
$$
This statistic was defined in [1] to explain Ramanujan's partition congruence $$p(11n+6) \equiv 0 \pmod{11}$$ in the same way as the Dyson rank ([[St000145]]) explains the congruences $$p(5n+4) \equiv 0 \pmod{5}$$ and $$p(7n+5) \equiv 0 \pmod{7}.$$
Matching statistic: St000159
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 25%●distinct values known / distinct values provided: 18%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 25%●distinct values known / distinct values provided: 18%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {16,42,42}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {16,42,42}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {16,42,42}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {768,2316,24024,24024,2144892}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {292864,12985968,701149020,701149020}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {292864,12985968,701149020,701149020}
Description
The number of distinct parts of the integer partition.
This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
The following 46 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000307The number of rowmotion orbits of a poset. St000346The number of coarsenings of a partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St001330The hat guessing number of a graph. St001432The order dimension of the partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000454The largest eigenvalue of a graph if it is integral. St000481The number of upper covers of a partition in dominance order. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001644The dimension of a graph. St000143The largest repeated part of a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000668The least common multiple of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001128The exponens consonantiae of a partition. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000480The number of lower covers of a partition in dominance order. St000759The smallest missing part in an integer partition. St001638The book thickness of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000477The weight of a partition according to Alladi. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000455The second largest eigenvalue of a graph if it is integral. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000741The Colin de Verdière graph invariant. St001642The Prague dimension of a graph. St001734The lettericity of a graph. St001812The biclique partition number of a graph. St000095The number of triangles of a graph. St000286The number of connected components of the complement of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000822The Hadwiger number of the graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!