searching the database
Your data matches 107 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001597
St001597: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> 1
[[2],[]]
=> 1
[[1,1],[]]
=> 1
[[2,1],[1]]
=> 2
[[3],[]]
=> 1
[[2,1],[]]
=> 1
[[3,1],[1]]
=> 2
[[2,2],[1]]
=> 1
[[3,2],[2]]
=> 2
[[1,1,1],[]]
=> 1
[[2,2,1],[1,1]]
=> 2
[[2,1,1],[1]]
=> 2
[[3,2,1],[2,1]]
=> 3
[[4],[]]
=> 1
[[3,1],[]]
=> 1
[[4,1],[1]]
=> 2
[[2,2],[]]
=> 2
[[3,2],[1]]
=> 1
[[4,2],[2]]
=> 2
[[2,1,1],[]]
=> 1
[[3,2,1],[1,1]]
=> 2
[[3,1,1],[1]]
=> 2
[[4,2,1],[2,1]]
=> 3
[[3,3],[2]]
=> 1
[[4,3],[3]]
=> 2
[[2,2,1],[1]]
=> 1
[[3,3,1],[2,1]]
=> 2
[[3,2,1],[2]]
=> 2
[[4,3,1],[3,1]]
=> 3
[[2,2,2],[1,1]]
=> 1
[[3,3,2],[2,2]]
=> 2
[[3,2,2],[2,1]]
=> 2
[[4,3,2],[3,2]]
=> 3
[[1,1,1,1],[]]
=> 1
[[2,2,2,1],[1,1,1]]
=> 2
[[2,2,1,1],[1,1]]
=> 2
[[3,3,2,1],[2,2,1]]
=> 3
[[2,1,1,1],[1]]
=> 2
[[3,2,2,1],[2,1,1]]
=> 3
[[3,2,1,1],[2,1]]
=> 3
[[4,3,2,1],[3,2,1]]
=> 4
[[5],[]]
=> 1
[[4,1],[]]
=> 1
[[5,1],[1]]
=> 2
[[3,2],[]]
=> 2
[[4,2],[1]]
=> 1
[[5,2],[2]]
=> 2
[[3,1,1],[]]
=> 1
[[4,2,1],[1,1]]
=> 2
[[4,1,1],[1]]
=> 2
Description
The Frobenius rank of a skew partition.
This is the minimal number of border strips in a border strip decomposition of the skew partition.
Matching statistic: St000482
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 3
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 4
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,1],[1]]
=> ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,2],[2]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,2,1],[1,1]]
=> ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[4,1,1],[1]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
Description
The (zero)-forcing number of a graph.
This is the minimal number of vertices initially coloured black, such that eventually all vertices of the graph are coloured black when using the following rule:
when $u$ is a black vertex of $G$, and exactly one neighbour $v$ of $u$ is white, then colour $v$ black.
Matching statistic: St000544
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 3
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 4
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,1],[1]]
=> ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,2],[2]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,2,1],[1,1]]
=> ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[4,1,1],[1]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
Description
The cop number of a graph.
This is the minimal number of cops needed to catch the robber. The algorithm is from [2].
Matching statistic: St000885
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00200: Binary words —twist⟶ Binary words
St000885: Binary words ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00200: Binary words —twist⟶ Binary words
St000885: Binary words ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> []
=> => ? => ? = 1
[[2],[]]
=> []
=> => ? => ? ∊ {1,1}
[[1,1],[]]
=> []
=> => ? => ? ∊ {1,1}
[[2,1],[1]]
=> [1]
=> 10 => 00 => 2
[[3],[]]
=> []
=> => ? => ? ∊ {1,1,1}
[[2,1],[]]
=> []
=> => ? => ? ∊ {1,1,1}
[[3,1],[1]]
=> [1]
=> 10 => 00 => 2
[[2,2],[1]]
=> [1]
=> 10 => 00 => 2
[[3,2],[2]]
=> [2]
=> 100 => 000 => 3
[[1,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1}
[[2,2,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[2,1,1],[1]]
=> [1]
=> 10 => 00 => 2
[[3,2,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[4],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2}
[[3,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2}
[[4,1],[1]]
=> [1]
=> 10 => 00 => 2
[[2,2],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2}
[[3,2],[1]]
=> [1]
=> 10 => 00 => 2
[[4,2],[2]]
=> [2]
=> 100 => 000 => 3
[[2,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2}
[[3,2,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[3,1,1],[1]]
=> [1]
=> 10 => 00 => 2
[[4,2,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[3,3],[2]]
=> [2]
=> 100 => 000 => 3
[[4,3],[3]]
=> [3]
=> 1000 => 0000 => 4
[[2,2,1],[1]]
=> [1]
=> 10 => 00 => 2
[[3,3,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[3,2,1],[2]]
=> [2]
=> 100 => 000 => 3
[[4,3,1],[3,1]]
=> [3,1]
=> 10010 => 00010 => 3
[[2,2,2],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[3,3,2],[2,2]]
=> [2,2]
=> 1100 => 0100 => 2
[[3,2,2],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[4,3,2],[3,2]]
=> [3,2]
=> 10100 => 00100 => 3
[[1,1,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1110 => 0110 => 2
[[2,2,1,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> 11010 => 01010 => 1
[[2,1,1,1],[1]]
=> [1]
=> 10 => 00 => 2
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> 10110 => 00110 => 3
[[3,2,1,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> 101010 => 001010 => 2
[[5],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[4,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[5,1],[1]]
=> [1]
=> 10 => 00 => 2
[[3,2],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[4,2],[1]]
=> [1]
=> 10 => 00 => 2
[[5,2],[2]]
=> [2]
=> 100 => 000 => 3
[[3,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[4,2,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[4,1,1],[1]]
=> [1]
=> 10 => 00 => 2
[[5,2,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[3,3],[1]]
=> [1]
=> 10 => 00 => 2
[[4,3],[2]]
=> [2]
=> 100 => 000 => 3
[[5,3],[3]]
=> [3]
=> 1000 => 0000 => 4
[[2,2,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[3,3,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[3,2,1],[1]]
=> [1]
=> 10 => 00 => 2
[[4,3,1],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[4,2,1],[2]]
=> [2]
=> 100 => 000 => 3
[[5,3,1],[3,1]]
=> [3,1]
=> 10010 => 00010 => 3
[[3,2,2],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[4,3,2],[2,2]]
=> [2,2]
=> 1100 => 0100 => 2
[[4,2,2],[2,1]]
=> [2,1]
=> 1010 => 0010 => 2
[[5,3,2],[3,2]]
=> [3,2]
=> 10100 => 00100 => 3
[[2,1,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1110 => 0110 => 2
[[3,2,1,1],[1,1]]
=> [1,1]
=> 110 => 010 => 1
[[1,1,1,1,1],[]]
=> []
=> => ? => ? ∊ {1,1,1,1,2,2,3}
[[6],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[5,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[4,2],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[4,1,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[3,3],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[3,2,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[3,1,1,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[2,2,2],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[2,2,1,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[2,1,1,1,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
[[1,1,1,1,1,1],[]]
=> []
=> => ? => ? ∊ {2,2,2,3,3,3,3,3,3,4,4}
Description
The number of critical steps in the Catalan decomposition of a binary word.
Every binary word can be written in a unique way as $(\mathcal D 0)^\ell \mathcal D (1 \mathcal D)^m$, where $\mathcal D$ is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the number of critical steps $\ell + m$ in the Catalan factorisation.
The distribution of this statistic on words of length $n$ is
$$
(n+1)q^n+\sum_{\substack{k=0\\\text{k even}}}^{n-2} \frac{(n-1-k)^2}{1+k/2}\binom{n}{k/2}q^{n-2-k}.
$$
Matching statistic: St000696
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000696: Permutations ⟶ ℤResult quality: 88% ●values known / values provided: 88%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000696: Permutations ⟶ ℤResult quality: 88% ●values known / values provided: 88%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> []
=> []
=> [] => ? = 1
[[2],[]]
=> []
=> []
=> [] => ? ∊ {1,1}
[[1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1}
[[2,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1}
[[2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1}
[[3,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[2,2],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1}
[[2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[2,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2}
[[3,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2}
[[4,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[2,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2}
[[3,2],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[4,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[2,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2}
[[3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[4,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[4,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 4
[[2,2,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[4,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[[3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[[2,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[[3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[[5],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[4,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[5,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[3,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[4,2],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[5,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[3,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[4,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[4,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[5,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,3],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[5,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 4
[[2,2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[3,3,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,2,1],[1]]
=> [1]
=> [1,0]
=> [1] => 2
[[4,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 3
[[5,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[4,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[[4,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[5,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[2,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[3,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[1,1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,3}
[[6],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[3,3],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[3,2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[3,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[2,2,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[2,2,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[2,1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[6,5,3,2,1],[5,3,2,1]]
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,2,5,7,6,4,8,3] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,5,4,2,1],[4,4,2,1]]
=> [4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [3,4,6,5,2,7,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[6,5,4,2,1],[5,4,2,1]]
=> [5,4,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,4,5,7,6,3,8,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,5,4,3,1],[4,4,3,1]]
=> [4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[6,5,4,3,1],[5,4,3,1]]
=> [5,4,3,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,4,7,6,5,3,8,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,5,4,3,2],[4,4,3,2]]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[6,5,4,3,2],[5,4,3,2]]
=> [5,4,3,2]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,4,7,6,8,5,3,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[1,1,1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,4,4,3,2,1],[3,3,3,2,1]]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,4,6,3,2,7,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,4,3,3,2,1],[3,3,2,2,1]]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,5,6,4,2,7,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,4,3,2,2,1],[3,3,2,1,1]]
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,5,4,2,6,7,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,5,4,3,2,1],[4,4,3,2,1]]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,6,5,7,4,2,8,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,3,3,3,2,1],[3,2,2,2,1]]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[4,3,3,2,2,1],[3,2,2,1,1]]
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,4,4,3,2,1],[4,3,3,2,1]]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,6,5,7,4,3,8,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,4,3,3,2,1],[4,3,2,2,1]]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,6,7,5,3,8,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[5,4,3,2,2,1],[4,3,2,1,1]]
=> [4,3,2,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,4,6,5,3,7,8,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
[[6,5,4,3,2,1],[5,4,3,2,1]]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,4,7,6,8,5,3,9,2] => ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4}
Description
The number of cycles in the breakpoint graph of a permutation.
The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$.
This graph decomposes into alternating cycles, which this statistic counts.
The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by
$$
\frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}),
$$
where $(x)_n=x(x-1)\dots(x-n+1)$.
Matching statistic: St000444
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Values
[[1],[]]
=> []
=> []
=> ?
=> ? = 1
[[2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,2}
[[2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,2}
[[3],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[2,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[2,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[[3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[1,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[2,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[5],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[5,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[3,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[5,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[3,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[5,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[5,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[2,2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[3,3,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[5,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[[4,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[5,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[2,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[3,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[3,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[4,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[4,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[5,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[5,4],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,4,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[4,3,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[5,4,1],[4,1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[2,2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,4,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[3,2,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[1,1,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,4,5}
[[6],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[5,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[6,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[4,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[5,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[4,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[5,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[3,3],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[4,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[3,2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[4,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[3,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[4,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
[[3,3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,6}
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St000675
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000675: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000675: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Values
[[1],[]]
=> []
=> []
=> ?
=> ? = 1
[[2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,2}
[[2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,2}
[[3],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3}
[[2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[2,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[2,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[[3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[1,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[[2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[2,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[5],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[5,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[3,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[5,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[3,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[5,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[5,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[2,2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[3,3,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[3,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[5,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[[4,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[5,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[2,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[[3,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[4,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[3,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[4,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[4,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[5,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[5,4],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,4,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[4,3,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[5,4,1],[4,1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[2,2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,4,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[3,2,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[4,3,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[1,1,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5}
[[6],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[5,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[6,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[4,2],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[5,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[4,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[5,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[3,3],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[4,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[3,2,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[4,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[3,1,1,1],[]]
=> []
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[4,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
[[3,3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,6}
Description
The number of centered multitunnels of a Dyck path.
This is the number of factorisations $D = A B C$ of a Dyck path, such that $B$ is a Dyck path and $A$ and $B$ have the same length.
Matching statistic: St000678
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 83%
Values
[[1],[]]
=> []
=> []
=> []
=> ? = 1
[[2],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,2}
[[1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,2}
[[2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,2}
[[3],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,2,2,3}
[[2,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,2,2,3}
[[3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[1,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,2,2,3}
[[2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,2,2,3}
[[3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[4],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[2,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[3,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[4,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[2,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[4,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[3,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
[[3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[4,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[1,1,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[[2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[2,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[[5],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[5,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[3,2],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[5,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[3,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[4,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[5,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[3,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[5,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[2,2,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[3,3,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[3,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[4,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[5,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[4,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
[[4,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[5,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[2,1,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[[3,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[4,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[3,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[4,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[4,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[5,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[5,4],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[4,4,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[4,3,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[5,4,1],[4,1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[[2,2,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[4,4,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[3,2,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[4,3,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[1,1,1,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,5}
[[6],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[5,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[6,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[4,2],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[5,2],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[4,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[5,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[3,3],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[4,3],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[3,2,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[4,2,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[3,1,1,1],[]]
=> []
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[4,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
[[3,3,1],[1]]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,6}
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St001024
Mp00182: Skew partitions —outer shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001024: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001024: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Values
[[1],[]]
=> [1]
=> []
=> []
=> ? = 1
[[2],[]]
=> [2]
=> []
=> []
=> ? = 2
[[1,1],[]]
=> [1,1]
=> [1]
=> [1,0]
=> 1
[[2,1],[1]]
=> [2,1]
=> [1]
=> [1,0]
=> 1
[[3],[]]
=> [3]
=> []
=> []
=> ? = 3
[[2,1],[]]
=> [2,1]
=> [1]
=> [1,0]
=> 1
[[3,1],[1]]
=> [3,1]
=> [1]
=> [1,0]
=> 1
[[2,2],[1]]
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[[3,2],[2]]
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[[1,1,1],[]]
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[2,2,1],[1,1]]
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[2,1,1],[1]]
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[3,2,1],[2,1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[4],[]]
=> [4]
=> []
=> []
=> ? = 4
[[3,1],[]]
=> [3,1]
=> [1]
=> [1,0]
=> 1
[[4,1],[1]]
=> [4,1]
=> [1]
=> [1,0]
=> 1
[[2,2],[]]
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[[3,2],[1]]
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[[4,2],[2]]
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[[2,1,1],[]]
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[3,2,1],[1,1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[3,1,1],[1]]
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[4,2,1],[2,1]]
=> [4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[3,3],[2]]
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[4,3],[3]]
=> [4,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[2,2,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[3,3,1],[2,1]]
=> [3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[3,2,1],[2]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[4,3,1],[3,1]]
=> [4,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[2,2,2],[1,1]]
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[[3,3,2],[2,2]]
=> [3,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
[[3,2,2],[2,1]]
=> [3,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[[4,3,2],[3,2]]
=> [4,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
[[1,1,1,1],[]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[2,2,2,1],[1,1,1]]
=> [2,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[[2,2,1,1],[1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[3,3,2,1],[2,2,1]]
=> [3,3,2,1]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[[2,1,1,1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[3,2,2,1],[2,1,1]]
=> [3,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[[3,2,1,1],[2,1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[4,3,2,1],[3,2,1]]
=> [4,3,2,1]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[[5],[]]
=> [5]
=> []
=> []
=> ? ∊ {4,4,5}
[[4,1],[]]
=> [4,1]
=> [1]
=> [1,0]
=> 1
[[5,1],[1]]
=> [5,1]
=> [1]
=> [1,0]
=> 1
[[3,2],[]]
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[[4,2],[1]]
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[[5,2],[2]]
=> [5,2]
=> [2]
=> [1,0,1,0]
=> 2
[[3,1,1],[]]
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[4,2,1],[1,1]]
=> [4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[4,1,1],[1]]
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[[5,2,1],[2,1]]
=> [5,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[3,3],[1]]
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[4,3],[2]]
=> [4,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[5,3],[3]]
=> [5,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[2,2,1],[]]
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[4,4,3,2,1],[3,3,2,1]]
=> [4,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {4,4,5}
[[5,4,3,2,1],[4,3,2,1]]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {4,4,5}
[[6],[]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,2,1],[3,3,2,1]]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,4,3,2,1],[4,3,2,1]]
=> [6,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,2,1],[4,2,1]]
=> [5,5,2,1]
=> [5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,2,1],[5,2,1]]
=> [6,5,2,1]
=> [5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,3,1],[4,3,1]]
=> [5,5,3,1]
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,3,1],[5,3,1]]
=> [6,5,3,1]
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,3,2],[4,3,2]]
=> [5,5,3,2]
=> [5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,3,2],[5,3,2]]
=> [6,5,3,2]
=> [5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,2,1],[3,2,2,1]]
=> [4,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,2,2,1],[3,2,1,1]]
=> [4,4,2,2,1]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,2,1,1],[3,2,1]]
=> [4,4,2,1,1]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,3,2,1],[4,3,2,1]]
=> [5,5,3,2,1]
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,2,1],[4,2,2,1]]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,2,2,1],[4,2,1,1]]
=> [5,4,2,2,1]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,2,1,1],[4,2,1]]
=> [5,4,2,1,1]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,3,2,1],[5,3,2,1]]
=> [6,5,3,2,1]
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,1],[4,4,1]]
=> [5,5,4,1]
=> [5,4,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,4,1],[5,4,1]]
=> [6,5,4,1]
=> [5,4,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,2],[4,4,2]]
=> [5,5,4,2]
=> [5,4,2]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,4,2],[5,4,2]]
=> [6,5,4,2]
=> [5,4,2]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,4,2,1],[3,3,2,1]]
=> [4,4,4,2,1]
=> [4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,2,1],[3,3,1,1]]
=> [4,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,1,1],[3,3,1]]
=> [4,4,3,1,1]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,2,1],[4,4,2,1]]
=> [5,5,4,2,1]
=> [5,4,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,4,2,1],[4,3,2,1]]
=> [5,4,4,2,1]
=> [4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,2,1],[4,3,1,1]]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,1,1],[4,3,1]]
=> [5,4,3,1,1]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,4,2,1],[5,4,2,1]]
=> [6,5,4,2,1]
=> [5,4,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,3],[4,4,3]]
=> [5,5,4,3]
=> [5,4,3]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,4,3],[5,4,3]]
=> [6,5,4,3]
=> [5,4,3]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,4,3,1],[3,3,3,1]]
=> [4,4,4,3,1]
=> [4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,3,1],[3,3,2,1]]
=> [4,4,3,3,1]
=> [4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,2,1],[3,3,2]]
=> [4,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,3,1],[4,4,3,1]]
=> [5,5,4,3,1]
=> [5,4,3,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,4,3,1],[4,3,3,1]]
=> [5,4,4,3,1]
=> [4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,3,1],[4,3,2,1]]
=> [5,4,3,3,1]
=> [4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,4,3,2,1],[4,3,2]]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[6,5,4,3,1],[5,4,3,1]]
=> [6,5,4,3,1]
=> [5,4,3,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,4,3,2],[3,3,3,2]]
=> [4,4,4,3,2]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,3,2],[3,3,2,2]]
=> [4,4,3,3,2]
=> [4,3,3,2]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[4,4,3,2,2],[3,3,2,1]]
=> [4,4,3,2,2]
=> [4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[5,5,4,3,2],[4,4,3,2]]
=> [5,5,4,3,2]
=> [5,4,3,2]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
Description
Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000702
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000702: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 83%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000702: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 83%
Values
[[1],[]]
=> []
=> []
=> [] => ? = 1
[[2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2}
[[1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,2}
[[2,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,2}
[[3],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,2,2,3}
[[2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,2,2,3}
[[3,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,2,2,3}
[[2,2],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,2,2,3}
[[3,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,2,2,3}
[[2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[2,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,2,2,3}
[[3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[2,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[4,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[4,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[[2,2,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[4,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[[3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[2,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,2,2,2,3,3,4}
[[3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[[3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[[5],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[5,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[3,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,2],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[5,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[3,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[4,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[5,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[3,3],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[5,3],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[[2,2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[3,3,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[3,2,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[5,3,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[4,3,2],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[[4,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[5,3,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[2,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[3,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[3,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[[4,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[3,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[4,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[[4,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[5,3,2,1],[3,2,1]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[[5,4],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[4,4,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[4,3,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[[5,4,1],[4,1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4
[[2,2,2],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[4,4,2],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[3,2,2],[2]]
=> [2]
=> [1,0,1,0]
=> [1,2] => 2
[[4,3,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[1,1,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,4,4,4,5}
[[6],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[5,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[6,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[4,2],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[5,2],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[4,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[5,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[3,3],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[4,3],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[3,2,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[4,2,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[3,1,1,1],[]]
=> []
=> []
=> [] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[4,1,1,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
[[3,3,1],[1]]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6}
Description
The number of weak deficiencies of a permutation.
This is defined as
$$\operatorname{wdec}(\sigma)=\#\{i:\sigma(i) \leq i\}.$$
The number of weak exceedances is [[St000213]], the number of deficiencies is [[St000703]].
The following 97 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000485The length of the longest cycle of a permutation. St001471The magnitude of a Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St000504The cardinality of the first block of a set partition. St000823The number of unsplittable factors of the set partition. St000925The number of topologically connected components of a set partition. St001062The maximal size of a block of a set partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000906The length of the shortest maximal chain in a poset. St001060The distinguishing index of a graph. St001330The hat guessing number of a graph. St001488The number of corners of a skew partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001115The number of even descents of a permutation. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000259The diameter of a connected graph. St001637The number of (upper) dissectors of a poset. St001114The number of odd descents of a permutation. St001621The number of atoms of a lattice. St000528The height of a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001782The order of rowmotion on the set of order ideals of a poset. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000454The largest eigenvalue of a graph if it is integral. St001061The number of indices that are both descents and recoils of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000075The orbit size of a standard tableau under promotion. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000455The second largest eigenvalue of a graph if it is integral. St001875The number of simple modules with projective dimension at most 1. St001960The number of descents of a permutation minus one if its first entry is not one. St000264The girth of a graph, which is not a tree. St000100The number of linear extensions of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001668The number of points of the poset minus the width of the poset. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001151The number of blocks with odd minimum. St001052The length of the exterior of a permutation. St000456The monochromatic index of a connected graph. St000091The descent variation of a composition. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000989The number of final rises of a permutation. St000307The number of rowmotion orbits of a poset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001435The number of missing boxes in the first row. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001948The number of augmented double ascents of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!