Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001693
St001693: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> 1
{{1,2}}
=> 1
{{1},{2}}
=> 0
{{1,2,3}}
=> 1
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 0
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 1
{{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 1
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 0
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 0
{{1},{2,4},{3}}
=> 0
{{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 1
{{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 1
{{1,2,4,5},{3}}
=> 1
{{1,2,4},{3,5}}
=> 2
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 2
{{1,2,5},{3},{4}}
=> 1
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 2
{{1,2},{3},{4},{5}}
=> 1
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 0
{{1,3},{2,5},{4}}
=> 1
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 0
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 2
Description
The excess length of a longest path consisting of elements and blocks of a set partition. Let $p$ be a set partition of $\{1,\dots,n\}$. Let $G$ be the graph with edges $(i,i+1)$ for $i\in\{1,\dots,n-1\}$ and $(i, b)$, whenever $i$ is an element of a non-singleton block $b\in p$. Then this statistic records the length of the longest path from $1$ to $n$ in $G$, reduced by $n$. Conjecturally, a longest path has more than $n$ vertices provided that the set partition has no singletons.
Matching statistic: St001630
Mp00080: Set partitions to permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001630: Lattices ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 1
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Mp00080: Set partitions to permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001878: Lattices ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 1
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,1,1}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001491
Mp00080: Set partitions to permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00114: Permutations connectivity setBinary words
St001491: Binary words ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 25%
Values
{{1}}
=> [1] => [1] => => ? = 1
{{1,2}}
=> [2,1] => [2,1] => 0 => ? = 0
{{1},{2}}
=> [1,2] => [1,2] => 1 => 1
{{1,2,3}}
=> [2,3,1] => [2,3,1] => 00 => ? ∊ {0,0}
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 01 => 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => 00 => ? ∊ {0,0}
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 10 => 1
{{1},{2},{3}}
=> [1,2,3] => [1,3,2] => 10 => 1
{{1,2,3,4}}
=> [2,3,4,1] => [2,4,3,1] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1,2,3},{4}}
=> [2,3,1,4] => [2,4,1,3] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 010 => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,4,3] => 010 => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 001 => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => 100 => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,4,3,2] => 100 => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 000 => ? ∊ {0,0,0,0,1,2,2}
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 100 => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,4,3,2] => 100 => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,4,3,2] => 100 => 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,5,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,5,4,1,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,5,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,5,1,4,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,5,1,4,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,5,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,5,4,1,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,5,4,1,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => 0100 => 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,5,4,3] => 0100 => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => 0100 => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,5,4,3] => 0100 => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,5,4,3] => 0100 => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,5,4,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,5,1,4] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,5,4,2,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,4,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,5,1,4,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,5,4,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => 0010 => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,5,4] => 0010 => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,5,1,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => 0001 => 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,4,2,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,4,3,2] => 1000 => 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,5,4,3,2] => 1000 => 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,2,4,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,5,4,3,2] => 1000 => 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,5,4,3,2] => 1000 => 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,5,4,3,2] => 1000 => 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,5,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,2,5,1,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [4,2,5,1,3] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,5,4,3,2] => 1000 => 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,5,4,3,2] => 1000 => 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,5,4,3,2] => 1000 => 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => 1000 => 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,5,4,3,2] => 1000 => 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,5,4,3,2] => 1000 => 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,2,4,3,1] => 0000 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,4,3,2] => 1000 => 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,5,4,3,2] => 1000 => 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,5,4,3,2] => 1000 => 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,5,4,3,2] => 1000 => 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [2,6,5,4,3,1] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [2,6,5,4,1,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [2,6,5,4,3,1] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [2,6,5,1,4,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [2,6,5,1,4,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [2,6,5,4,3,1] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [2,6,5,4,1,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [2,6,5,4,1,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [2,6,5,4,3,1] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [2,6,1,5,4,3] => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.