Your data matches 80 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00184: Integer compositions to threshold graphGraphs
St001723: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The differential of a graph. The external neighbourhood (or boundary) of a set of vertices $S\subseteq V(G)$ is the set of vertices not in $S$ which are adjacent to a vertex in $S$. The differential of a set of vertices $S\subseteq V(G)$ is the difference of the size of the external neighbourhood of $S$ and the size of $S$. The differential of a graph is the maximal differential of a set of vertices.
Mp00184: Integer compositions to threshold graphGraphs
St001724: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The 2-packing differential of a graph. The external neighbourhood (or boundary) of a set of vertices $S\subseteq V(G)$ is the set of vertices not in $S$ which are adjacent to a vertex in $S$. The differential of a set of vertices $S\subseteq V(G)$ is the difference of the size of the external neighbourhood of $S$ and the size of $S$. A set $S\subseteq V(G)$ is $2$-packing if the closed neighbourhoods of any two vertices in $S$ have empty intersection. The $2$-packing differential of a graph is the maximal differential of any $2$-packing set of vertices.
Matching statistic: St001742
Mp00184: Integer compositions to threshold graphGraphs
St001742: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2] => ([(1,2)],3)
=> 1
[2,1] => ([(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3] => ([(2,3)],4)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> 2
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4] => ([(3,4)],5)
=> 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> 2
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,5] => ([(4,5)],6)
=> 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The difference of the maximal and the minimal degree in a graph. The graph is regular if and only if this statistic is zero.
Matching statistic: St001331
Mp00184: Integer compositions to threshold graphGraphs
Mp00147: Graphs squareGraphs
St001331: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2] => ([],2)
=> ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The size of the minimal feedback vertex set. A feedback vertex set is a set of vertices whose removal results in an acyclic graph.
Matching statistic: St001336
Mp00184: Integer compositions to threshold graphGraphs
Mp00147: Graphs squareGraphs
St001336: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2] => ([],2)
=> ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The minimal number of vertices in a graph whose complement is triangle-free.
Mp00231: Integer compositions bounce pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> []
=> []
=> 0
[1,1] => [1,0,1,0]
=> [1]
=> [[1]]
=> 0
[2] => [1,1,0,0]
=> []
=> []
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [2,1]
=> [[1,2],[3]]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [1,1]
=> [[1],[2]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [2]
=> [[1,2]]
=> 0
[3] => [1,1,1,0,0,0]
=> []
=> []
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1],[2],[3]]
=> 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[1,2],[3,4]]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [3]
=> [[1,2,3]]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[1,2,3,4]]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]]
=> 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]]
=> 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]]
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]]
=> 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]]
=> 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]]
=> 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]]
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]]
=> 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]]
=> 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]]
=> 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]]
=> 3
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00034: Dyck paths to binary tree: up step, left tree, down step, right treeBinary trees
Mp00018: Binary trees left border symmetryBinary trees
St000204: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [.,.]
=> [.,.]
=> 0
[1,1] => [1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> 0
[2] => [1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 1
[3] => [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],.]]
=> 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> 4
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> 4
Description
The number of internal nodes of a binary tree. That is, the total number of nodes of the tree minus [[St000203]]. A counting formula for the total number of internal nodes across all binary trees of size $n$ is given in [1]. This is equivalent to the number of internal triangles in all triangulations of an $(n+1)$-gon.
Matching statistic: St000356
Mp00231: Integer compositions bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000356: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,5,4] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,6,5,4,3,2] => 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,6,5,4,3,2] => 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,6,5,4,3,2] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,6,5,4,3,2] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,6,5,4,3,2] => 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,6,5,4,3,2] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,6,5,4,3,2] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [1,6,5,4,3,2] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,6,5,4,3,2] => 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,6,5,4,3,2] => 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,6,5,4,3,2] => 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,6,5,4,3,2] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [1,6,5,4,3,2] => 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,6,5,4,3,2] => 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [1,6,5,4,3,2] => 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [1,6,5,4,3,2] => 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,6,5,4,3] => 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [2,1,6,5,4,3] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [2,1,6,5,4,3] => 3
Description
The number of occurrences of the pattern 13-2. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $13\!\!-\!\!2$.
Matching statistic: St000463
Mp00231: Integer compositions bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000463: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,5,4] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,6,5,4,3,2] => 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,6,5,4,3,2] => 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,6,5,4,3,2] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,6,5,4,3,2] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,6,5,4,3,2] => 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,6,5,4,3,2] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,6,5,4,3,2] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [1,6,5,4,3,2] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,6,5,4,3,2] => 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,6,5,4,3,2] => 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,6,5,4,3,2] => 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,6,5,4,3,2] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [1,6,5,4,3,2] => 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [1,6,5,4,3,2] => 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [1,6,5,4,3,2] => 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [1,6,5,4,3,2] => 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,6,5,4,3] => 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [2,1,6,5,4,3] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [2,1,6,5,4,3] => 3
Description
The number of admissible inversions of a permutation. Let $w = w_1,w_2,\dots,w_k$ be a word of length $k$ with distinct letters from $[n]$. An admissible inversion of $w$ is a pair $(w_i,w_j)$ such that $1\leq i < j\leq k$ and $w_i > w_j$ that satisfies either of the following conditions: $1 < i$ and $w_{i−1} < w_i$ or there is some $l$ such that $i < l < j$ and $w_i < w_l$.
Matching statistic: St001231
Mp00231: Integer compositions bounce pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001231: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 0
[2,1] => [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 4
Description
The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. Actually the same statistics results for algebras with at most 7 simple modules when dropping the assumption that the module has projective dimension one. The author is not sure whether this holds in general.
The following 70 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001234The number of indecomposable three dimensional modules with projective dimension one. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001727The number of invisible inversions of a permutation. St000931The number of occurrences of the pattern UUU in a Dyck path. St000060The greater neighbor of the maximum. St000652The maximal difference between successive positions of a permutation. St001246The maximal difference between two consecutive entries of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St001280The number of parts of an integer partition that are at least two. St000010The length of the partition. St000147The largest part of an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000024The number of double up and double down steps of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000039The number of crossings of a permutation. St000218The number of occurrences of the pattern 213 in a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St001557The number of inversions of the second entry of a permutation. St001624The breadth of a lattice. St000454The largest eigenvalue of a graph if it is integral. St001877Number of indecomposable injective modules with projective dimension 2. St001811The Castelnuovo-Mumford regularity of a permutation. St000766The number of inversions of an integer composition. St001556The number of inversions of the third entry of a permutation. St001822The number of alignments of a signed permutation. St001856The number of edges in the reduced word graph of a permutation. St001980The Castelnuovo-Mumford regularity of an alternating sign matrix. St000789The number of crossing-similar perfect matchings of a perfect matching. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000215The number of adjacencies of a permutation, zero appended. St001095The number of non-isomorphic posets with precisely one further covering relation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000089The absolute variation of a composition. St000260The radius of a connected graph. St000264The girth of a graph, which is not a tree. St000365The number of double ascents of a permutation. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000567The sum of the products of all pairs of parts. St000650The number of 3-rises of a permutation. St000668The least common multiple of the parts of the partition. St000706The product of the factorials of the multiplicities of an integer partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000243The number of cyclic valleys and cyclic peaks of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001768The number of reduced words of a signed permutation. St001964The interval resolution global dimension of a poset. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001060The distinguishing index of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph.