searching the database
Your data matches 66 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001729
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St001729: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 2
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 2
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 2
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
Description
The number of visible descents of a permutation.
A visible descent of a permutation $\pi$ is a position $i$ such that $\pi(i+1) \leq \min(i, \pi(i))$.
Matching statistic: St000354
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => [1] => ? = 0
[1,2] => {{1},{2}}
=> [1,2] => [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => [3,1,2] => 1
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => [2,3,1] => 1
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => [2,3,1] => 1
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 1
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 1
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 1
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 1
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 1
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => 1
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => 1
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 1
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => 2
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 1
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => 2
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => 1
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => 1
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 1
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 1
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 1
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 1
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 2
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 2
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,5,3,4] => 1
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,2,3,5] => 1
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,2,3,4] => 1
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,4,5,2,3] => 1
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,4,5,2,3] => 1
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,3,5,2,4] => 2
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,3,5,2,4] => 2
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,2,5,3] => 1
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,2,5,3] => 1
Description
The number of recoils of a permutation.
A '''recoil''', or '''inverse descent''' of a permutation $\pi$ is a value $i$ such that $i+1$ appears to the left of $i$ in $\pi_1,\pi_2,\dots,\pi_n$.
In other words, this is the number of descents of the inverse permutation. It can be also be described as the number of occurrences of the mesh pattern $([2,1], {(0,1),(1,1),(2,1)})$, i.e., the middle row is shaded.
Matching statistic: St000260
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 75% ●values known / values provided: 77%●distinct values known / distinct values provided: 75%
Mp00238: Permutations —Clarke-Steingrimsson-Zeng⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 75% ●values known / values provided: 77%●distinct values known / distinct values provided: 75%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 0
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[2,3,1] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,1,2] => [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[1,2,4,3] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[1,3,2,4] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[1,3,4,2] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[2,3,1,4] => [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [2,4,3,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [2,4,3,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [3,1,4,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [3,1,4,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,2}
[3,2,4,1] => [3,2,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [3,4,2,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [4,1,3,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[4,1,3,2] => [4,1,3,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[4,2,1,3] => [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[4,2,3,1] => [4,2,3,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [4,3,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[4,3,2,1] => [4,3,2,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,3,5,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,4,3,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,4,5,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,5,3,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,5,4,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,2,4,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,2,5,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,4,2,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,4,5,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,5,2,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,3,5,4,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,2,3,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,2,5,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,3,2,5] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,3,5,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,5,2,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,4,5,3,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,2,3,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,2,4,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,3,2,4] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,3,4,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,4,2,3] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,5,4,3,2] => [1,5,4,3,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[2,3,1,4,5] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,5,4] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,5,4,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,1,3,5] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,3,1,5] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,3,5,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,5,3,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,1,3,4] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,1,4,3] => [2,5,1,4,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,5,3,4,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,5,4,3,1] => [2,5,4,3,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,2,4,5] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,2,5,4] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,5,2] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,5,2,4] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,5,4,2] => [3,1,5,4,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[3,2,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[3,2,4,1,5] => [3,2,5,1,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,4,5,1] => [3,2,5,4,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,1,4] => [3,2,5,1,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,1,2,5] => [3,5,1,4,2] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,1,5,2] => [3,5,1,4,2] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,2,1,5] => [4,3,2,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3}
[1,2,3,4,5,6] => [1,6,5,4,3,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,4,6,5] => [1,6,5,4,3,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4,6] => [1,6,5,4,3,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,6,4] => [1,6,5,4,3,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000937
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 75%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 75%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1}
[3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1}
[3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[1,2,3,4] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,2,3] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,4] => [3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[4,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2}
[4,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 2
[1,2,3,4,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,2,3,5,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,2,5,3,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,2,5,4,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,4,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,2,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,5,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,5,2,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,2,3,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,2,5,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,2,5] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,5,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,2,3,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,2,4,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,3,2,4] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,3,4,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,2,3] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[2,1,3,4,5] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,3,5] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,5,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,5,3,4] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,3,1,4,5] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,5,4] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,1,5] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[2,3,5,1,4] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,4,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[2,4,1,3,5] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,5,3] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,1,5] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,5,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[2,4,5,1,3] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,3,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[2,5,1,3,4] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,4,3] => [2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,1,4] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,4,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[2,5,4,1,3] => [2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,3,1] => [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[3,1,2,4,5] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,5,4] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,2,5] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,5,2] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,2,4] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,4,2] => [3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,1,4,5] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,1,5,4] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,4,1,5] => [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,1,4] => [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,2,1,5] => [3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,2,5,1] => [3,5,2,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,2,1] => [3,5,4,2,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,2,1,4] => [3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,2,4,1] => [3,5,2,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,4,2,1] => [3,5,4,2,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,2,3,5] => [4,1,5,3,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,2,5,3] => [4,1,5,3,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,3,2,5] => [4,1,5,3,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St000668
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 75%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 75%
Values
[1] => [1]
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1}
[3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,2,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,3,2,1] => [2,2]
=> [2]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 2
[2,1,4,5,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 2
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> 2
[2,4,5,3,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 2
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 2
[3,4,1,5,2] => [3,2]
=> [2]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,2,5,1] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> 2
[3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The least common multiple of the parts of the partition.
Matching statistic: St001039
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001039: Dyck paths ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 75%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001039: Dyck paths ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 75%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,1,1,1,1}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,1,1,1,1}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The maximal height of a column in the parallelogram polyomino associated with a Dyck path.
Matching statistic: St001568
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 61%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 61%●distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> 1
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,1}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,4,1,2] => [2,2]
=> [2]
=> [1,1]
=> 2
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,1]
=> 2
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St001630
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 50% ●values known / values provided: 56%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 50% ●values known / values provided: 56%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,1}
[2,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {0,1}
[1,2,3] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[1,3,2] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[2,1,3] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[2,3,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[3,1,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1}
[1,2,3,4] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,4,3] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,2,4] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,4,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,2,3] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,3,2] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,3,4] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,4,3] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,1,4] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,4,1] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,1,3] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,2,4] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,4,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,1,4] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,4,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,1,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,2,3] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,3,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,1,3] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,3,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,1,2] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,3,4,5] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,3,5,4] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,3,5] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,5,3] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,5,3,4] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,5,4,3] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,4,5] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,5,4] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2,5] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,5,2] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,2,4] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,4,2] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,2,3,5] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,2,5,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,2,5] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,5,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,4,5,2,3] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,5,3,2] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,3,4] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,4,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,5,3,2,4] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,3,4,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,4,3,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,5,3,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,3,1,5,4] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,4,1,5,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,4,3,5,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,5,1,4,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,5,3,4,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,2,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,1,5,2,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,2,4,1,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,2,5,1,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,4,1,5,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,4,2,5,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,5,1,4,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,5,2,4,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,1,3,2,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,1,5,2,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,2,3,1,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,2,5,1,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,3,5,1,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,5,1,3,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,5,2,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,1,3,2,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,1,4,2,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,2,3,1,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,2,4,1,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,3,4,1,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,4,3,5,6] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,4,3,6,5] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,5,3,4,6] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,5,3,6,4] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,5,4,6,3] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,6,3,4,5] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,6,3,5,4] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,6,4,5,3] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,4,6,5] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,4,6] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,3,2,5,6,4] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,6,4,5] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,3,2,6,5,4] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2,5,6] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2,6,5] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,2,4,6] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,2,6,4] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,4,6,2] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 50% ●values known / values provided: 54%●distinct values known / distinct values provided: 50%
Mp00013: Binary trees —to poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 50% ●values known / values provided: 54%●distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,1}
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,1}
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,4,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,3,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,1,3] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,1,2] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,2,4,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,3,1,4] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,2,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,4,5,2] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,5,4,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,5,4,1] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,5,2,4,1] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,3,2,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000707
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 52%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000707: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 52%●distinct values known / distinct values provided: 50%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {0,1,1,1,1,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {0,1,1,1,1,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,1,1,1,1,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,5,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,1,5] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,3,5,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,5,3,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1,5] => [4,3,2,1] => [2,2]
=> [2]
=> 2
[4,3,2,5,1] => [4,3,2,1] => [2,2]
=> [2]
=> 2
[4,3,5,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 2
[4,5,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,5,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 2
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[5,1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[5,1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[5,1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
Description
The product of the factorials of the parts.
The following 56 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000259The diameter of a connected graph. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000815The number of semistandard Young tableaux of partition weight of given shape. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St001389The number of partitions of the same length below the given integer partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000455The second largest eigenvalue of a graph if it is integral. St000454The largest eigenvalue of a graph if it is integral. St000256The number of parts from which one can substract 2 and still get an integer partition. St001330The hat guessing number of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001877Number of indecomposable injective modules with projective dimension 2. St001128The exponens consonantiae of a partition. St000284The Plancherel distribution on integer partitions. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000770The major index of an integer partition when read from bottom to top. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001720The minimal length of a chain of small intervals in a lattice. St000618The number of self-evacuating tableaux of given shape. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001780The order of promotion on the set of standard tableaux of given shape. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001597The Frobenius rank of a skew partition. St000862The number of parts of the shifted shape of a permutation. St001624The breadth of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!