searching the database
Your data matches 121 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001803
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00153: Standard tableaux —inverse promotion⟶ Standard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00153: Standard tableaux —inverse promotion⟶ Standard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> [[1]]
=> 0
[1,0,1,0]
=> [1,2] => [[1,2]]
=> [[1,2]]
=> 0
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> [[1],[2]]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> [[1,2,3]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> [[1,3],[2]]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> [[1,2],[3]]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> [[1,3],[2]]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> [[1],[2],[3]]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> [[1,2,3,4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> [[1,3,4],[2]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> [[1,2,3],[4]]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> [[1,2],[3,4]]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> [[1,3,4],[2]]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> [[1,3],[2],[4]]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> [[1,2],[3],[4]]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> [[1],[2],[3],[4]]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> [[1,3,4,5],[2]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> [[1,3,5],[2,4]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [[1,4,5],[2],[3]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> [[1,5],[2],[3],[4]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> [[1,2],[3,5],[4]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> [[1,3,4,5],[2]]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> [[1,3,5],[2,4]]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [[1,4,5],[2],[3]]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> [[1,5],[2],[3],[4]]
=> 0
Description
The maximal overlap of the cylindrical tableau associated with a tableau.
A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle.
The overlap, recorded in this statistic, equals $\max_C\big(2\ell(T) - \ell(C)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
In particular, the statistic equals $0$, if and only if the last entry of the first row is larger than or equal to the first entry of the last row. Moreover, the statistic attains its maximal value, the number of rows of the tableau minus 1, if and only if the tableau consists of a single column.
Matching statistic: St001232
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 90%●distinct values known / distinct values provided: 29%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 90%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> ? ∊ {1,3}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> ? ∊ {1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {0,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,2,2,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,2,1,3,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,3,2,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [5,3,4,2,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [4,3,5,2,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [5,4,2,3,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [5,3,2,4,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,5,1,6,7] => [5,3,2,4,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,1,6,7] => [5,3,2,4,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,1,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,1,6,7] => [5,3,2,4,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,1,6,7] => [5,2,3,4,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [5,4,3,1,2,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,5,3,1,2,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [5,3,4,1,2,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,5,1,2,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [5,4,2,1,3,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,2,1,3,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [5,3,2,1,4,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [3,4,2,1,5,6,7] => [4,3,2,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [5,2,3,1,4,6,7] => [5,4,3,2,1,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,2,3,1,5,6,7] => [4,3,2,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [3,2,4,1,5,6,7] => [4,2,3,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7] => [4,2,3,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,6}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001604
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 84%●distinct values known / distinct values provided: 29%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 84%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> [2,1] => [1,1]
=> [1]
=> ? = 0
[1,0,1,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,1}
[1,1,0,0]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,1,2}
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {0,0,0,1,2}
[1,1,0,0,1,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> ? ∊ {0,0,0,1,2}
[1,1,0,1,0,0]
=> [4,3,1,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,1,2}
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,1,2}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [2,2,1]
=> [2,1]
=> 0
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 0
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [2,2,1]
=> [2,1]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [4,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [3,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [3,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [3,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,3]
=> [3]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,3]
=> [3]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [4,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,2,1]
=> [2,1]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [4,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [3,2,1]
=> [2,1]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [5,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [5,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [5,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [4,3]
=> [3]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [4,3]
=> [3]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [5,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [5,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [4,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [4,3]
=> [3]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [3,3,1]
=> [3,1]
=> 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,2,1]
=> [2,1]
=> 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [4,1,1,1]
=> [1,1,1]
=> 0
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000929
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 80%●distinct values known / distinct values provided: 29%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 80%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> []
=> ?
=> ?
=> ? = 0
[1,0,1,0]
=> [1]
=> []
=> ?
=> ? ∊ {0,1}
[1,1,0,0]
=> []
=> ?
=> ?
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,2}
[1,0,1,1,0,0]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,2}
[1,1,0,0,1,0]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,0,1,2}
[1,1,0,1,0,0]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,0,1,2}
[1,1,1,0,0,0]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,1,2}
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> [2]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> [2]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [3,2,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [4,3,2,1]
=> [3,2,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [3,3,2,1]
=> [3,2,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [3,3,2,1]
=> [3,2,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [3,3,2,1]
=> [3,2,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [4,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [4,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [3,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [3,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [3,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [4,3,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [4,3,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [3,3,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [3,3,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [3,3,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [4,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [4,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [3,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [3,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [3,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,4,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,5}
Description
The constant term of the character polynomial of an integer partition.
The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.
Matching statistic: St000205
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.
Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Matching statistic: St000206
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also [[St000205]].
Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000658
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {0,0,0,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,5}
Description
The number of rises of length 2 of a Dyck path.
This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1].
A related statistic is the number of double rises in a Dyck path, [[St000024]].
Matching statistic: St000661
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000661: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000661: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 68%●distinct values known / distinct values provided: 29%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {0,2}
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {0,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
Description
The number of rises of length 3 of a Dyck path.
Matching statistic: St000749
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 43% ●values known / values provided: 68%●distinct values known / distinct values provided: 43%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? ∊ {1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.
For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6. However, restricting to $\mathfrak S_6$ yields
$$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1. Therefore, the statistic on the partition $(6,3)$ gives 3.
This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].
Matching statistic: St000980
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000980: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 68%●distinct values known / distinct values provided: 14%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000980: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 68%●distinct values known / distinct values provided: 14%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {1,1,1,1,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,5}
Description
The number of boxes weakly below the path and above the diagonal that lie below at least two peaks.
For example, the path $111011010000$ has three peaks in positions $03, 15, 26$. The boxes below $03$ are $01,02,\textbf{12}$, the boxes below $15$ are $\textbf{12},13,14,\textbf{23},\textbf{24},\textbf{34}$, and the boxes below $26$ are $\textbf{23},\textbf{24},25,\textbf{34},35,45$.
We thus obtain the four boxes in positions $12,23,24,34$ that are below at least two peaks.
The following 111 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001175The size of a partition minus the hook length of the base cell. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St000455The second largest eigenvalue of a graph if it is integral. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St000117The number of centered tunnels of a Dyck path. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000292The number of ascents of a binary word. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001423The number of distinct cubes in a binary word. St001524The degree of symmetry of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001730The number of times the path corresponding to a binary word crosses the base line. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001525The number of symmetric hooks on the diagonal of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000137The Grundy value of an integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001657The number of twos in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001330The hat guessing number of a graph. St001587Half of the largest even part of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000260The radius of a connected graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001556The number of inversions of the third entry of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001403The number of vertical separators in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000779The tier of a permutation. St000872The number of very big descents of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001570The minimal number of edges to add to make a graph Hamiltonian. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001520The number of strict 3-descents. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001964The interval resolution global dimension of a poset. St001846The number of elements which do not have a complement in the lattice. St000741The Colin de Verdière graph invariant. St001820The size of the image of the pop stack sorting operator. St000454The largest eigenvalue of a graph if it is integral. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000655The length of the minimal rise of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!