Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001712
St001712: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1,2]]
=> 0
[[1],[2]]
=> 0
[[1,2,3]]
=> 0
[[1,3],[2]]
=> 1
[[1,2],[3]]
=> 0
[[1],[2],[3]]
=> 0
[[1,2,3,4]]
=> 0
[[1,3,4],[2]]
=> 1
[[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> 0
[[1,3],[2,4]]
=> 1
[[1,2],[3,4]]
=> 0
[[1,4],[2],[3]]
=> 1
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 0
[[1],[2],[3],[4]]
=> 0
[[1,2,3,4,5]]
=> 0
[[1,3,4,5],[2]]
=> 1
[[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> 1
[[1,2,3,4],[5]]
=> 0
[[1,3,5],[2,4]]
=> 2
[[1,2,5],[3,4]]
=> 1
[[1,3,4],[2,5]]
=> 1
[[1,2,4],[3,5]]
=> 1
[[1,2,3],[4,5]]
=> 0
[[1,4,5],[2],[3]]
=> 1
[[1,3,5],[2],[4]]
=> 2
[[1,2,5],[3],[4]]
=> 1
[[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> 1
[[1,2,3],[4],[5]]
=> 0
[[1,4],[2,5],[3]]
=> 1
[[1,3],[2,5],[4]]
=> 2
[[1,2],[3,5],[4]]
=> 1
[[1,3],[2,4],[5]]
=> 1
[[1,2],[3,4],[5]]
=> 0
[[1,5],[2],[3],[4]]
=> 1
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> 0
[[1],[2],[3],[4],[5]]
=> 0
[[1,2,3,4,5,6]]
=> 0
[[1,3,4,5,6],[2]]
=> 1
[[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> 1
[[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,5],[6]]
=> 0
[[1,3,5,6],[2,4]]
=> 2
Description
The number of natural descents of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
Matching statistic: St001840
Mp00284: Standard tableaux rowsSet partitions
Mp00112: Set partitions complementSet partitions
St001840: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> 0
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> 0
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> 0
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 0
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 0
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> 2
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 0
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> 2
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 0
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 0
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 0
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 0
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> 0
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> 2
Description
The number of descents of a set partition. The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$. The word $w$ has a descent at position $i$ if $w_i > w_{i+1}$.
Matching statistic: St000157
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [[1]]
=> 0
[[1,2]]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[[1],[2]]
=> [2,1] => [1,2] => [[1,2]]
=> 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [[1,2],[3]]
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => [[1,2,3]]
=> 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [[1,2,3]]
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => [[1,2,4],[3]]
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => [[1,2,4,5],[3]]
=> 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => [[1,2,4],[3,5]]
=> 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => [[1,2,4,5],[3]]
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => [[1,2,4],[3,5]]
=> 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [[1,2,4,5],[3]]
=> 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => [[1,2,3],[4,5]]
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => [[1,2,3,5,6],[4]]
=> 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => [[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> 2
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
St000354: Permutations ⟶ ℤResult quality: 94% values known / values provided: 94%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ? = 0
[[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => 2
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,2,5,6,3,4] => 1
[[1,4,6,7],[2,5],[3]]
=> [3,2,5,1,4,6,7] => [1,4,6,7,2,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,4,6,7],[2],[3],[5]]
=> [5,3,2,1,4,6,7] => [1,4,6,7,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,4,7],[2,5],[3,6]]
=> [3,6,2,5,1,4,7] => [1,4,7,2,5,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5,7],[2,6],[3],[4]]
=> [4,3,2,6,1,5,7] => [1,5,7,2,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => [1,4,7,2,6,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,4,7],[2,5],[3],[6]]
=> [6,3,2,5,1,4,7] => [1,4,7,2,5,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5,6],[2,7],[3],[4]]
=> [4,3,2,7,1,5,6] => [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5,7],[2],[3],[4],[6]]
=> [6,4,3,2,1,5,7] => [1,5,7,2,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,4,7],[2],[3],[5],[6]]
=> [6,5,3,2,1,4,7] => [1,4,7,2,3,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5,6],[2],[3],[4],[7]]
=> [7,4,3,2,1,5,6] => [1,5,6,2,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5],[2,6],[3,7],[4]]
=> [4,3,7,2,6,1,5] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,6],[2,7],[3],[4],[5]]
=> [5,4,3,2,7,1,6] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [1,5,2,7,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,6],[2],[3],[4],[5],[7]]
=> [7,5,4,3,2,1,6] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[[1,5],[2],[3],[4],[6],[7]]
=> [7,6,4,3,2,1,5] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
Description
The number of recoils of a permutation. A '''recoil''', or '''inverse descent''' of a permutation $\pi$ is a value $i$ such that $i+1$ appears to the left of $i$ in $\pi_1,\pi_2,\dots,\pi_n$. In other words, this is the number of descents of the inverse permutation. It can be also be described as the number of occurrences of the mesh pattern $([2,1], {(0,1),(1,1),(2,1)})$, i.e., the middle row is shaded.
Matching statistic: St000662
Mp00081: Standard tableaux reading word permutationPermutations
Mp00126: Permutations cactus evacuationPermutations
Mp00223: Permutations runsortPermutations
St000662: Permutations ⟶ ℤResult quality: 91% values known / values provided: 91%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [2,3,1] => [1,2,3] => 0
[[1,2],[3]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,3,4,1] => [1,2,3,4] => 0
[[1,2,4],[3]]
=> [3,1,2,4] => [1,3,4,2] => [1,3,4,2] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,4,3] => [1,2,4,3] => 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,4,1,3] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,4,2,1] => [1,2,3,4] => 0
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => [1,2,4,3] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,4,2,3] => 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => 0
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,3,4,5,2] => [1,3,4,5,2] => 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,4,5,3] => [1,2,4,5,3] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [2,4,5,1,3] => [1,3,2,4,5] => 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [3,4,5,1,2] => [1,2,3,4,5] => 0
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [2,3,5,1,4] => [1,4,2,3,5] => 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,3,5,2,4] => [1,3,5,2,4] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,4,5,2,3] => [1,4,5,2,3] => 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,4,5,2,1] => [1,2,3,4,5] => 0
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [2,4,5,3,1] => [1,2,4,5,3] => 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,4,5,3,2] => [1,4,5,2,3] => 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [2,3,5,4,1] => [1,2,3,5,4] => 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,3,5,4,2] => [1,3,5,2,4] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,5,3,4] => 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [3,5,2,4,1] => [1,2,4,3,5] => 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [4,5,2,3,1] => [1,2,3,4,5] => 0
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,5,1,3,2] => [1,3,2,4,5] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [2,5,1,4,3] => [1,4,2,5,3] => 2
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [3,5,1,4,2] => [1,4,2,3,5] => 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,5,3,2,1] => [1,2,3,4,5] => 0
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,5,4,2,1] => [1,2,3,5,4] => 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [2,5,4,3,1] => [1,2,5,3,4] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,5,4,3,2] => [1,5,2,3,4] => 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => 0
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,4,5,6,2] => [1,3,4,5,6,2] => 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [2,4,5,6,1,3] => [1,3,2,4,5,6] => 1
[[1,3,4,5,7],[2,6]]
=> [2,6,1,3,4,5,7] => [2,3,4,6,7,1,5] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,4,5,6],[2,7]]
=> [2,7,1,3,4,5,6] => [2,3,4,5,7,1,6] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [1,5,6,7,2,4,3] => [1,5,6,7,2,4,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,5,7],[2,4],[6]]
=> [6,2,4,1,3,5,7] => [2,4,6,7,1,5,3] => [1,5,2,4,6,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,5,7],[3,4],[6]]
=> [6,3,4,1,2,5,7] => [3,4,6,7,1,5,2] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,4,7],[2,5],[6]]
=> [6,2,5,1,3,4,7] => [2,3,6,7,1,5,4] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3,7],[4,5],[6]]
=> [6,4,5,1,2,3,7] => [1,4,6,7,2,5,3] => [1,4,6,7,2,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,5,6],[2,4],[7]]
=> [7,2,4,1,3,5,6] => [2,4,5,7,1,6,3] => [1,6,2,4,5,7,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,5,6],[3,4],[7]]
=> [7,3,4,1,2,5,6] => [3,4,5,7,1,6,2] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,4,6],[2,5],[7]]
=> [7,2,5,1,3,4,6] => [2,3,5,7,1,6,4] => [1,6,2,3,5,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,4,5],[2,6],[3,7]]
=> [3,7,2,6,1,4,5] => [3,4,7,2,6,1,5] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,5],[2,6],[4,7]]
=> [4,7,2,6,1,3,5] => [2,4,7,3,6,1,5] => [1,5,2,4,7,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,5],[3,6],[4,7]]
=> [4,7,3,6,1,2,5] => [1,4,7,3,6,2,5] => [1,4,7,2,5,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,4],[3,6],[5,7]]
=> [5,7,3,6,1,2,4] => [1,5,7,3,6,2,4] => [1,5,7,2,4,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,4],[3,5],[6,7]]
=> [6,7,3,5,1,2,4] => [1,6,7,3,5,2,4] => [1,6,7,2,4,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,7],[3,5],[4],[6]]
=> [6,4,3,5,1,2,7] => [4,6,7,1,5,3,2] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,7],[2,4],[5],[6]]
=> [6,5,2,4,1,3,7] => [2,6,7,1,5,4,3] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,7],[3,4],[5],[6]]
=> [6,5,3,4,1,2,7] => [3,6,7,1,5,4,2] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,4],[3,7],[5],[6]]
=> [6,5,3,7,1,2,4] => [1,6,7,3,5,4,2] => [1,6,7,2,3,5,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3],[4,7],[5],[6]]
=> [6,5,4,7,1,2,3] => [1,6,7,2,5,4,3] => [1,6,7,2,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,6],[3,5],[4],[7]]
=> [7,4,3,5,1,2,6] => [4,5,7,1,6,3,2] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,6],[2,4],[5],[7]]
=> [7,5,2,4,1,3,6] => [2,5,7,1,6,4,3] => [1,6,2,5,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,6],[3,4],[5],[7]]
=> [7,5,3,4,1,2,6] => [3,5,7,1,6,4,2] => [1,6,2,3,5,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,5],[3,6],[4],[7]]
=> [7,4,3,6,1,2,5] => [1,4,7,3,6,5,2] => [1,4,7,2,3,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,4],[3,6],[5],[7]]
=> [7,5,3,6,1,2,4] => [1,5,7,3,6,4,2] => [1,5,7,2,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3],[4,6],[5],[7]]
=> [7,5,4,6,1,2,3] => [1,5,7,2,6,4,3] => [1,5,7,2,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,5],[2,4],[6],[7]]
=> [7,6,2,4,1,3,5] => [2,4,7,1,6,5,3] => [1,6,2,4,7,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [1,4,7,2,6,5,3] => [1,4,7,2,6,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,4],[2,5],[3,6],[7]]
=> [7,3,6,2,5,1,4] => [3,7,2,6,1,5,4] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,3],[2,5],[4,6],[7]]
=> [7,4,6,2,5,1,3] => [4,7,2,6,1,5,3] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2],[3,5],[4,6],[7]]
=> [7,4,6,3,5,1,2] => [4,7,3,6,1,5,2] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2],[3,7],[4],[5],[6]]
=> [6,5,4,3,7,1,2] => [6,7,1,5,4,3,2] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[[1,2],[3,6],[4],[5],[7]]
=> [7,5,4,3,6,1,2] => [5,7,1,6,4,3,2] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000470
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00066: Permutations inversePermutations
St000470: Permutations ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 1 = 0 + 1
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
[[1],[2]]
=> [2,1] => [1,2] => [1,2] => 1 = 0 + 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => [1,4,2,3] => 2 = 1 + 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => [1,5,2,3,4] => 2 = 1 + 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => [1,2,5,3,4] => 2 = 1 + 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => [1,4,2,5,3] => 3 = 2 + 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => [1,2,4,5,3] => 2 = 1 + 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => [1,4,2,3,5] => 2 = 1 + 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => [1,4,5,2,3] => 2 = 1 + 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => [1,4,2,5,3] => 3 = 2 + 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => [1,2,4,5,3] => 2 = 1 + 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [1,4,2,3,5] => 2 = 1 + 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => [1,3,5,2,4] => 2 = 1 + 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => [1,3,2,5,4] => 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => [1,3,4,5,2] => 2 = 1 + 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [1,3,4,2,5] => 2 = 1 + 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1 = 0 + 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => [1,6,2,3,4,5] => 2 = 1 + 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => [1,2,6,3,4,5] => 2 = 1 + 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => [1,2,3,6,4,5] => 2 = 1 + 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => 2 = 1 + 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1 = 0 + 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => [1,5,2,6,3,4] => 3 = 2 + 1
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,3,4,5,6,7,2] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6,7],[2,4]]
=> [2,4,1,3,5,6,7] => [1,3,5,6,7,2,4] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6,7],[2,5]]
=> [2,5,1,3,4,6,7] => [1,3,4,6,7,2,5] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,7],[2,6]]
=> [2,6,1,3,4,5,7] => [1,3,4,5,7,2,6] => [1,6,2,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,6],[2,7]]
=> [2,7,1,3,4,5,6] => [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [1,4,5,6,7,2,3] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6,7],[2],[4]]
=> [4,2,1,3,5,6,7] => [1,3,5,6,7,2,4] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6,7],[2],[5]]
=> [5,2,1,3,4,6,7] => [1,3,4,6,7,2,5] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,7],[2],[6]]
=> [6,2,1,3,4,5,7] => [1,3,4,5,7,2,6] => [1,6,2,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,6],[2],[7]]
=> [7,2,1,3,4,5,6] => [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,4,6]]
=> [2,4,6,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,5,6]]
=> [2,5,6,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,4,7]]
=> [2,4,7,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,5,7]]
=> [2,5,7,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,6,7]]
=> [2,6,7,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6,7],[2,5],[3]]
=> [3,2,5,1,4,6,7] => [1,4,6,7,2,5,3] => [1,5,7,2,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => [1,3,6,7,2,5,4] => [1,5,2,7,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [1,3,6,7,2,4,5] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,7],[2,6],[3]]
=> [3,2,6,1,4,5,7] => [1,4,5,7,2,6,3] => [1,5,7,2,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,6],[4]]
=> [4,2,6,1,3,5,7] => [1,3,5,7,2,6,4] => [1,5,2,7,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,6],[5]]
=> [5,2,6,1,3,4,7] => [1,3,4,7,2,6,5] => [1,5,2,3,7,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,4],[6]]
=> [6,2,4,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,5],[6]]
=> [6,2,5,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6],[2,7],[3]]
=> [3,2,7,1,4,5,6] => [1,4,5,6,2,7,3] => [1,5,7,2,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,7],[4]]
=> [4,2,7,1,3,5,6] => [1,3,5,6,2,7,4] => [1,5,2,7,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,7],[5]]
=> [5,2,7,1,3,4,6] => [1,3,4,6,2,7,5] => [1,5,2,3,7,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,7],[6]]
=> [6,2,7,1,3,4,5] => [1,3,4,5,2,7,6] => [1,5,2,3,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,4],[7]]
=> [7,2,4,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,5],[7]]
=> [7,2,5,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,6],[7]]
=> [7,2,6,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6,7],[2],[3],[5]]
=> [5,3,2,1,4,6,7] => [1,4,6,7,2,3,5] => [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2],[4],[5]]
=> [5,4,2,1,3,6,7] => [1,3,6,7,2,4,5] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,7],[2],[3],[6]]
=> [6,3,2,1,4,5,7] => [1,4,5,7,2,3,6] => [1,5,6,2,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2],[4],[6]]
=> [6,4,2,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2],[5],[6]]
=> [6,5,2,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6],[2],[3],[7]]
=> [7,3,2,1,4,5,6] => [1,4,5,6,2,3,7] => [1,5,6,2,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2],[5],[7]]
=> [7,5,2,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2],[6],[7]]
=> [7,6,2,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6],[2,5,7],[3]]
=> [3,2,5,7,1,4,6] => [1,4,6,2,5,7,3] => [1,4,7,2,5,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5],[2,6,7],[3]]
=> [3,2,6,7,1,4,5] => [1,4,5,2,6,7,3] => [1,4,7,2,3,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,7],[2,6],[3],[4]]
=> [4,3,2,6,1,5,7] => [1,5,7,2,6,3,4] => [1,4,6,7,2,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,6],[2,7],[3],[4]]
=> [4,3,2,7,1,5,6] => [1,5,6,2,7,3,4] => [1,4,6,7,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
Description
The number of runs in a permutation. A run in a permutation is an inclusion-wise maximal increasing substring, i.e., a contiguous subsequence. This is the same as the number of descents plus 1.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00066: Permutations inversePermutations
St000619: Permutations ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => ? = 0 + 1
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
[[1],[2]]
=> [2,1] => [1,2] => [1,2] => 1 = 0 + 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[[1,2],[3]]
=> [3,1,2] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,4,2] => [1,4,2,3] => 2 = 1 + 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,4,5,2] => [1,5,2,3,4] => 2 = 1 + 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,2,4,5,3] => [1,2,5,3,4] => 2 = 1 + 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,5,2,4] => [1,4,2,5,3] => 3 = 2 + 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,2,5,3,4] => [1,2,4,5,3] => 2 = 1 + 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,2,5] => [1,4,2,3,5] => 2 = 1 + 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,5,2,3] => [1,4,5,2,3] => 2 = 1 + 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,3,5,2,4] => [1,4,2,5,3] => 3 = 2 + 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,2,5,3,4] => [1,2,4,5,3] => 2 = 1 + 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [1,4,2,3,5] => 2 = 1 + 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,4,2,5,3] => [1,3,5,2,4] => 2 = 1 + 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,3,2,5,4] => [1,3,2,5,4] => 3 = 2 + 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,2,3,4] => [1,3,4,5,2] => 2 = 1 + 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [1,3,4,2,5] => 2 = 1 + 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1 = 0 + 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,4,5,6,2] => [1,6,2,3,4,5] => 2 = 1 + 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,2,4,5,6,3] => [1,2,6,3,4,5] => 2 = 1 + 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,3,5,6,4] => [1,2,3,6,4,5] => 2 = 1 + 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => 2 = 1 + 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1 = 0 + 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,5,6,2,4] => [1,5,2,6,3,4] => 3 = 2 + 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,2,5,6,3,4] => [1,2,5,6,3,4] => 2 = 1 + 1
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,3,4,5,6,7,2] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6,7],[2,4]]
=> [2,4,1,3,5,6,7] => [1,3,5,6,7,2,4] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6,7],[2,5]]
=> [2,5,1,3,4,6,7] => [1,3,4,6,7,2,5] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,7],[2,6]]
=> [2,6,1,3,4,5,7] => [1,3,4,5,7,2,6] => [1,6,2,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,6],[2,7]]
=> [2,7,1,3,4,5,6] => [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [1,4,5,6,7,2,3] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6,7],[2],[4]]
=> [4,2,1,3,5,6,7] => [1,3,5,6,7,2,4] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6,7],[2],[5]]
=> [5,2,1,3,4,6,7] => [1,3,4,6,7,2,5] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,7],[2],[6]]
=> [6,2,1,3,4,5,7] => [1,3,4,5,7,2,6] => [1,6,2,3,4,7,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5,6],[2],[7]]
=> [7,2,1,3,4,5,6] => [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,4,6]]
=> [2,4,6,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,5,6]]
=> [2,5,6,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,4,7]]
=> [2,4,7,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,5,7]]
=> [2,5,7,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,6,7]]
=> [2,6,7,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6,7],[2,5],[3]]
=> [3,2,5,1,4,6,7] => [1,4,6,7,2,5,3] => [1,5,7,2,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => [1,3,6,7,2,5,4] => [1,5,2,7,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [1,3,6,7,2,4,5] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,7],[2,6],[3]]
=> [3,2,6,1,4,5,7] => [1,4,5,7,2,6,3] => [1,5,7,2,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,6],[4]]
=> [4,2,6,1,3,5,7] => [1,3,5,7,2,6,4] => [1,5,2,7,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,6],[5]]
=> [5,2,6,1,3,4,7] => [1,3,4,7,2,6,5] => [1,5,2,3,7,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2,4],[6]]
=> [6,2,4,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2,5],[6]]
=> [6,2,5,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6],[2,7],[3]]
=> [3,2,7,1,4,5,6] => [1,4,5,6,2,7,3] => [1,5,7,2,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,7],[4]]
=> [4,2,7,1,3,5,6] => [1,3,5,6,2,7,4] => [1,5,2,7,3,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,7],[5]]
=> [5,2,7,1,3,4,6] => [1,3,4,6,2,7,5] => [1,5,2,3,7,4,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,7],[6]]
=> [6,2,7,1,3,4,5] => [1,3,4,5,2,7,6] => [1,5,2,3,4,7,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2,4],[7]]
=> [7,2,4,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2,5],[7]]
=> [7,2,5,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2,6],[7]]
=> [7,2,6,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6,7],[2],[3],[5]]
=> [5,3,2,1,4,6,7] => [1,4,6,7,2,3,5] => [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,6,7],[2],[4],[5]]
=> [5,4,2,1,3,6,7] => [1,3,6,7,2,4,5] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,7],[2],[3],[6]]
=> [6,3,2,1,4,5,7] => [1,4,5,7,2,3,6] => [1,5,6,2,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,7],[2],[4],[6]]
=> [6,4,2,1,3,5,7] => [1,3,5,7,2,4,6] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,7],[2],[5],[6]]
=> [6,5,2,1,3,4,7] => [1,3,4,7,2,5,6] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5,6],[2],[3],[7]]
=> [7,3,2,1,4,5,6] => [1,4,5,6,2,3,7] => [1,5,6,2,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,5,6],[2],[4],[7]]
=> [7,4,2,1,3,5,6] => [1,3,5,6,2,4,7] => [1,5,2,6,3,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,6],[2],[5],[7]]
=> [7,5,2,1,3,4,6] => [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,3,4,5],[2],[6],[7]]
=> [7,6,2,1,3,4,5] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,6],[2,5,7],[3]]
=> [3,2,5,7,1,4,6] => [1,4,6,2,5,7,3] => [1,4,7,2,5,3,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,4,5],[2,6,7],[3]]
=> [3,2,6,7,1,4,5] => [1,4,5,2,6,7,3] => [1,4,7,2,3,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,7],[2,6],[3],[4]]
=> [4,3,2,6,1,5,7] => [1,5,7,2,6,3,4] => [1,4,6,7,2,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
[[1,5,6],[2,7],[3],[4]]
=> [4,3,2,7,1,5,6] => [1,5,6,2,7,3,4] => [1,4,6,7,2,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} + 1
Description
The number of cyclic descents of a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is given by the number of indices $1 \leq i \leq n$ such that $\pi(i) > \pi(i+1)$ where we set $\pi(n+1) = \pi(1)$.
Matching statistic: St000698
Mp00083: Standard tableaux shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000698: Integer partitions ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> []
=> ? = 0
[[1,2]]
=> [2]
=> [2]
=> []
=> ? ∊ {0,0}
[[1],[2]]
=> [1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0}
[[1,2,3]]
=> [3]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0}
[[1,3],[2]]
=> [2,1]
=> [3]
=> []
=> ? ∊ {0,0,0}
[[1,2],[3]]
=> [2,1]
=> [3]
=> []
=> ? ∊ {0,0,0}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3,4]]
=> [4]
=> [2,2]
=> [2]
=> 1
[[1,3,4],[2]]
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2,4],[3]]
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2,3],[4]]
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,4]]
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0}
[[1,2],[3,4]]
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0}
[[1,4],[2],[3]]
=> [2,1,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0}
[[1,3],[2],[4]]
=> [2,1,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0}
[[1,2],[3],[4]]
=> [2,1,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,4,5]]
=> [5]
=> [2,2,1]
=> [2,1]
=> 0
[[1,3,4,5],[2]]
=> [4,1]
=> [3,2]
=> [2]
=> 1
[[1,2,4,5],[3]]
=> [4,1]
=> [3,2]
=> [2]
=> 1
[[1,2,3,5],[4]]
=> [4,1]
=> [3,2]
=> [2]
=> 1
[[1,2,3,4],[5]]
=> [4,1]
=> [3,2]
=> [2]
=> 1
[[1,3,5],[2,4]]
=> [3,2]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,2,5],[3,4]]
=> [3,2]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,3,4],[2,5]]
=> [3,2]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,2,4],[3,5]]
=> [3,2]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,2,3],[4,5]]
=> [3,2]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,2,2}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,2,3,4,5,6]]
=> [6]
=> [2,2,2]
=> [2,2]
=> 2
[[1,3,4,5,6],[2]]
=> [5,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,4,5,6],[3]]
=> [5,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,3,5,6],[4]]
=> [5,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,3,4,6],[5]]
=> [5,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,3,4,5],[6]]
=> [5,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,3,5,6],[2,4]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,5,6],[3,4]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,3,4,6],[2,5]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,4,6],[3,5]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,3,6],[4,5]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,3,4,5],[2,6]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,4,5],[3,6]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,3,5],[4,6]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,2,3,4],[5,6]]
=> [4,2]
=> [4,2]
=> [2]
=> 1
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4,5],[2],[6]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,5],[2,4,6]]
=> [3,3]
=> [3,2,1]
=> [2,1]
=> 0
[[1,2,5],[3,4,6]]
=> [3,3]
=> [3,2,1]
=> [2,1]
=> 0
[[1,3,4],[2,5,6]]
=> [3,3]
=> [3,2,1]
=> [2,1]
=> 0
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,2],[3,6],[4],[5]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,4],[2,5],[3],[6]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,3],[2,5],[4],[6]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,2],[3,5],[4],[6]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,3],[2,4],[5],[6]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[[1,4,7],[2,5],[3,6]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,7],[2,5],[4,6]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,7],[3,5],[4,6]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,7],[2,4],[5,6]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,7],[3,4],[5,6]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,4,6],[2,5],[3,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,6],[2,5],[4,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,6],[3,5],[4,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,6],[2,4],[5,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,6],[3,4],[5,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,4,5],[2,6],[3,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,5],[2,6],[4,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,5],[3,6],[4,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,4],[2,6],[5,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,4],[3,6],[5,7]]
=> [3,2,2]
=> [6,1]
=> [1]
=> ? ∊ {0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$. This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Mp00106: Standard tableaux catabolismStandard tableaux
Mp00083: Standard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
[[1]]
=> [[1]]
=> [1]
=> []
=> ? = 0
[[1,2]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0}
[[1],[2]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0}
[[1,2,3]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,1}
[[1,3],[2]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[[1,2],[3]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,1}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,1}
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1}
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> 2
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> 2
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,2}
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> 2
[[1,2,5,6],[3,4]]
=> [[1,2,3,4],[5,6]]
=> [4,2]
=> [2]
=> 2
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> 2
[[1,2,4,6],[3,5]]
=> [[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> 2
[[1,2,3,6],[4,5]]
=> [[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,4,5],[2,6]]
=> [[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,4,5],[3,6]]
=> [[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,5],[4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,4],[5,6]]
=> [[1,2,3,4,5,6]]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,4,5,6],[2],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,5,6],[2],[4]]
=> [[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3],[4]]
=> [[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,3,6],[4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4,5],[2],[6]]
=> [[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,4,5],[3],[6]]
=> [[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,5],[4],[6]]
=> [[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3,4],[5],[6]]
=> [[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> 2
[[1,2,5],[3,4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,4],[2,5,6]]
=> [[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,4],[3,5,6]]
=> [[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,2,3],[4,5,6]]
=> [[1,2,3,4,5,6]]
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,4,6],[2,5],[3]]
=> [[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [2,1]
=> 2
[[1,3,6],[2,5],[4]]
=> [[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,6],[3,5],[4]]
=> [[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,6],[2,4],[5]]
=> [[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [2,1]
=> 2
[[1,2,6],[3,4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,4,5],[2,6],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,5],[2,6],[4]]
=> [[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,5],[3,6],[4]]
=> [[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4],[2,6],[5]]
=> [[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3}
[[1,3,5],[2,4],[6]]
=> [[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> 2
[[1,2,5],[3,4],[6]]
=> [[1,2,3,4],[5,6]]
=> [4,2]
=> [2]
=> 2
[[1,3,4],[2,5],[6]]
=> [[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> 2
[[1,2,4],[3,5],[6]]
=> [[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> 2
[[1,5,6],[2],[3],[4]]
=> [[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[1,4,6],[2],[3],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[1,2,6],[3],[4],[5]]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,5],[2],[4],[6]]
=> [[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4],[6]]
=> [[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,3,4],[2],[5],[6]]
=> [[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,4],[3],[5],[6]]
=> [[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,2,3],[4],[5],[6]]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,1]
=> 1
[[1,4],[2,5],[3,6]]
=> [[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [2,1]
=> 2
[[1,3],[2,5],[4,6]]
=> [[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> 2
[[1,2],[3,5],[4,6]]
=> [[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> 2
[[1,3],[2,4],[5,6]]
=> [[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Matching statistic: St001489
Mp00081: Standard tableaux reading word permutationPermutations
Mp00066: Permutations inversePermutations
Mp00223: Permutations runsortPermutations
St001489: Permutations ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [2,1] => [1,2] => 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => [1,3,2] => 1
[[1,2],[3]]
=> [3,1,2] => [2,3,1] => [1,2,3] => 0
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => [1,3,4,2] => 1
[[1,2,4],[3]]
=> [3,1,2,4] => [2,3,1,4] => [1,4,2,3] => 1
[[1,2,3],[4]]
=> [4,1,2,3] => [2,3,4,1] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [2,4,1,3] => [3,1,4,2] => [1,4,2,3] => 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,4,1,2] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,4,2,3] => 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,2,4,1] => [1,2,4,3] => 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [3,4,2,1] => [1,2,3,4] => 0
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,2] => 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [2,3,1,4,5] => [1,4,5,2,3] => 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [2,3,4,1,5] => [1,5,2,3,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [2,3,4,5,1] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [3,1,4,2,5] => [1,4,2,5,3] => 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [3,4,1,2,5] => [1,2,5,3,4] => 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [3,1,4,5,2] => [1,4,5,2,3] => 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,4,1,5,2] => [1,5,2,3,4] => 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [3,4,5,1,2] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,4,5,2,3] => 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,2,4,1,5] => [1,5,2,4,3] => 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [3,4,2,1,5] => [1,5,2,3,4] => 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [3,2,4,5,1] => [1,2,4,5,3] => 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [3,4,2,5,1] => [1,2,5,3,4] => 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,4,5,2,1] => [1,2,3,4,5] => 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,2,1,5,3] => [1,5,2,3,4] => 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [4,2,5,1,3] => [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,5,2,1,3] => [1,3,2,4,5] => 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [4,2,5,3,1] => [1,2,5,3,4] => 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [4,5,2,3,1] => [1,2,3,4,5] => 0
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,5,2,3,4] => 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,3,2,5,1] => [1,2,5,3,4] => 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,3,5,2,1] => [1,2,3,5,4] => 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,5,3,2,1] => [1,2,3,4,5] => 0
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,3,4,5,6,2] => 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [2,3,1,4,5,6] => [1,4,5,6,2,3] => 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [2,3,4,1,5,6] => [1,5,6,2,3,4] => 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [2,3,4,5,1,6] => [1,6,2,3,4,5] => 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [3,1,4,2,5,6] => [1,4,2,5,6,3] => 2
[[1,2,3,5,6,7],[4]]
=> [4,1,2,3,5,6,7] => [2,3,4,1,5,6,7] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [2,3,4,5,1,6,7] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,4,5,7],[6]]
=> [6,1,2,3,4,5,7] => [2,3,4,5,6,1,7] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,6,7],[3,5]]
=> [3,5,1,2,4,6,7] => [3,4,1,5,2,6,7] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,5,7],[3,6]]
=> [3,6,1,2,4,5,7] => [3,4,1,5,6,2,7] => [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,5,7],[4,6]]
=> [4,6,1,2,3,5,7] => [3,4,5,1,6,2,7] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,5,6],[3,7]]
=> [3,7,1,2,4,5,6] => [3,4,1,5,6,7,2] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => [3,4,5,1,6,7,2] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => [3,4,5,6,1,7,2] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,6,7],[2],[4]]
=> [4,2,1,3,5,6,7] => [3,2,4,1,5,6,7] => [1,5,6,7,2,4,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [3,4,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,6,7],[2],[5]]
=> [5,2,1,3,4,6,7] => [3,2,4,5,1,6,7] => [1,6,7,2,4,5,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,6,7],[3],[5]]
=> [5,3,1,2,4,6,7] => [3,4,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [3,4,5,2,1,6,7] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,5,7],[2],[6]]
=> [6,2,1,3,4,5,7] => [3,2,4,5,6,1,7] => [1,7,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,5,7],[3],[6]]
=> [6,3,1,2,4,5,7] => [3,4,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,5,7],[4],[6]]
=> [6,4,1,2,3,5,7] => [3,4,5,2,6,1,7] => [1,7,2,6,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,4,7],[5],[6]]
=> [6,5,1,2,3,4,7] => [3,4,5,6,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,7],[2,4,6]]
=> [2,4,6,1,3,5,7] => [4,1,5,2,6,3,7] => [1,5,2,6,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,7],[2,5,6]]
=> [2,5,6,1,3,4,7] => [4,1,5,6,2,3,7] => [1,5,6,2,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,7],[3,5,6]]
=> [3,5,6,1,2,4,7] => [4,5,1,6,2,3,7] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,6],[2,4,7]]
=> [2,4,7,1,3,5,6] => [4,1,5,2,6,7,3] => [1,5,2,6,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,6],[2,5,7]]
=> [2,5,7,1,3,4,6] => [4,1,5,6,2,7,3] => [1,5,6,2,7,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,6],[3,5,7]]
=> [3,5,7,1,2,4,6] => [4,5,1,6,2,7,3] => [1,6,2,7,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,5],[2,6,7]]
=> [2,6,7,1,3,4,5] => [4,1,5,6,7,2,3] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,5],[3,6,7]]
=> [3,6,7,1,2,4,5] => [4,5,1,6,7,2,3] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,5],[4,6,7]]
=> [4,6,7,1,2,3,5] => [4,5,6,1,7,2,3] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,4,6,7],[2,5],[3]]
=> [3,2,5,1,4,6,7] => [4,2,1,5,3,6,7] => [1,5,2,3,6,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [4,2,5,3,1,6,7] => [1,6,7,2,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,6,7],[3,4],[5]]
=> [5,3,4,1,2,6,7] => [4,5,2,3,1,6,7] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,4,5,7],[2,6],[3]]
=> [3,2,6,1,4,5,7] => [4,2,1,5,6,3,7] => [1,5,6,2,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,7],[2,6],[4]]
=> [4,2,6,1,3,5,7] => [4,2,5,1,6,3,7] => [1,6,2,5,3,7,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,5,7],[3,6],[4]]
=> [4,3,6,1,2,5,7] => [4,5,2,1,6,3,7] => [1,6,2,3,7,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,7],[2,4],[6]]
=> [6,2,4,1,3,5,7] => [4,2,5,3,6,1,7] => [1,7,2,5,3,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,5,7],[3,4],[6]]
=> [6,3,4,1,2,5,7] => [4,5,2,3,6,1,7] => [1,7,2,3,6,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,7],[2,5],[6]]
=> [6,2,5,1,3,4,7] => [4,2,5,6,3,1,7] => [1,7,2,5,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [4,5,2,6,3,1,7] => [1,7,2,6,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,7],[4,5],[6]]
=> [6,4,5,1,2,3,7] => [4,5,6,2,3,1,7] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,4,5,6],[2,7],[3]]
=> [3,2,7,1,4,5,6] => [4,2,1,5,6,7,3] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,6],[2,7],[4]]
=> [4,2,7,1,3,5,6] => [4,2,5,1,6,7,3] => [1,6,7,2,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,5,6],[3,7],[4]]
=> [4,3,7,1,2,5,6] => [4,5,2,1,6,7,3] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,4,6],[2,7],[5]]
=> [5,2,7,1,3,4,6] => [4,2,5,6,1,7,3] => [1,7,2,5,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,4,6],[3,7],[5]]
=> [5,3,7,1,2,4,6] => [4,5,2,6,1,7,3] => [1,7,2,6,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,3,6],[4,7],[5]]
=> [5,4,7,1,2,3,6] => [4,5,6,2,1,7,3] => [1,7,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,4,6,7],[2],[3],[5]]
=> [5,3,2,1,4,6,7] => [4,3,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,6,7],[2],[4],[5]]
=> [5,4,2,1,3,6,7] => [4,3,5,2,1,6,7] => [1,6,7,2,3,5,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,2,6,7],[3],[4],[5]]
=> [5,4,3,1,2,6,7] => [4,5,3,2,1,6,7] => [1,6,7,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,4,5,7],[2],[3],[6]]
=> [6,3,2,1,4,5,7] => [4,3,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
[[1,3,5,7],[2],[4],[6]]
=> [6,4,2,1,3,5,7] => [4,3,5,2,6,1,7] => [1,7,2,6,3,5,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
Description
The maximum of the number of descents and the number of inverse descents. This is, the maximum of [[St000021]] and [[St000354]].
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000779The tier of a permutation. St000647The number of big descents of a permutation. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000646The number of big ascents of a permutation. St000454The largest eigenvalue of a graph if it is integral. St000021The number of descents of a permutation. St000325The width of the tree associated to a permutation. St000260The radius of a connected graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000455The second largest eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001896The number of right descents of a signed permutations. St001960The number of descents of a permutation minus one if its first entry is not one. St001820The size of the image of the pop stack sorting operator. St000527The width of the poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset.