Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001931: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,1] => 1
[2] => 0
[1,1,1] => 3
[1,2] => 0
[2,1] => 1
[3] => 0
[1,1,1,1] => 6
[1,1,2] => 1
[1,2,1] => 2
[1,3] => 0
[2,1,1] => 3
[2,2] => 1
[3,1] => 1
[4] => 0
[1,1,1,1,1] => 10
[1,1,1,2] => 3
[1,1,2,1] => 4
[1,1,3] => 1
[1,2,1,1] => 5
[1,2,2] => 2
[1,3,1] => 2
[1,4] => 0
[2,1,1,1] => 6
[2,1,2] => 1
[2,2,1] => 3
[2,3] => 0
[3,1,1] => 3
[3,2] => 1
[4,1] => 1
[5] => 0
[1,1,1,1,1,1] => 15
[1,1,1,1,2] => 6
[1,1,1,2,1] => 7
[1,1,1,3] => 3
[1,1,2,1,1] => 8
[1,1,2,2] => 4
[1,1,3,1] => 4
[1,1,4] => 1
[1,2,1,1,1] => 9
[1,2,1,2] => 2
[1,2,2,1] => 5
[1,2,3] => 0
[1,3,1,1] => 5
[1,3,2] => 2
[1,4,1] => 2
[1,5] => 0
[2,1,1,1,1] => 10
[2,1,1,2] => 3
[2,1,2,1] => 4
Description
The weak major index of an integer composition regarded as a word. This is the sum of the positions of the weak descents, regarding the composition as a word. That is, for a composition $c = (c_1,\dots,c_n)$, $$ \sum_{\substack{1\leq i < n\\ c_i\geq c_{i+1}}} i. $$
Matching statistic: St000498
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00174: Set partitions dual major index to intertwining numberSet partitions
St000498: Set partitions ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 45%
Values
[1] => [1,0]
=> {{1}}
=> {{1}}
=> ? = 0
[1,1] => [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1
[2] => [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 3
[1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0
[2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 1
[3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 6
[1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3},{2,4}}
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 3
[2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 0
[3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 10
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 4
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4},{2,5},{3}}
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 5
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3},{2,5},{4}}
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3},{2,4},{5}}
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,5},{2,4}}
=> 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 6
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4},{3,5}}
=> 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6}}
=> {{1},{2},{3},{4},{5},{6}}
=> 15
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6}}
=> {{1,6},{2},{3},{4},{5}}
=> 6
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6}}
=> {{1,5},{2},{3},{4},{6}}
=> 7
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5,6}}
=> {{1,5},{2,6},{3},{4}}
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6}}
=> {{1,4},{2},{3},{5},{6}}
=> 8
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6}}
=> {{1,4},{2,6},{3},{5}}
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3,4,5},{6}}
=> {{1,4},{2,5},{3},{6}}
=> 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4,5,6}}
=> {{1,4},{2,5},{3,6}}
=> 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6}}
=> {{1,3},{2},{4},{5},{6}}
=> 9
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6}}
=> {{1,3},{2,6},{4},{5}}
=> 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6}}
=> {{1,3},{2,5},{4},{6}}
=> 5
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5,6}}
=> {{1,3,6},{2,5},{4}}
=> 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> {{1,3},{2,4},{5},{6}}
=> 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> {{1,3,6},{2,4},{5}}
=> 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> {{1,3,5},{2,4},{6}}
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> {{1,3,5},{2,4,6}}
=> 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> {{1,2},{3},{4},{5},{6}}
=> 10
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> {{1,2,6},{3},{4},{5}}
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> {{1,2,5},{3},{4},{6}}
=> 4
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> {{1,2,5},{3,6},{4}}
=> 1
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4},{5},{6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> {{1,7},{2,8},{3},{4},{5},{6}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3},{4},{5,6},{7},{8}}
=> {{1,6},{2},{3},{4},{5},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6},{7,8}}
=> {{1,6},{2,8},{3},{4},{5},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3},{4},{5,6,7},{8}}
=> {{1,6},{2,7},{3},{4},{5},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> {{1,6},{2,7},{3,8},{4},{5}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4,5},{6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5},{6},{7,8}}
=> {{1,5},{2,8},{3},{4},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2},{3},{4,5,6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2},{3},{4,5,6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2},{3},{4,5,6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3},{4,5,6,7,8}}
=> {{1,5},{2,6},{3,7},{4,8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> {{1,4},{2,8},{3},{5},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5},{6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4},{5},{6,7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5,6},{7},{8}}
=> {{1,4},{2,6},{3},{5},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3,4},{5,6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> {{1,4,8},{2,6},{3,7},{5}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,3,1,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1},{2},{3,4,5},{6},{7},{8}}
=> {{1,4},{2,5},{3},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1},{2},{3,4,5},{6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1},{2},{3,4,5},{6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> {{1,4,8},{2,5},{3,7},{6}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1},{2},{3,4,5,6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1},{2},{3,4,5,6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1},{2},{3,4,5,6,7},{8}}
=> {{1,4,7},{2,5},{3,6},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,1,6] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,4,7},{2,5,8},{3,6}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> {{1,3},{2,8},{4},{5},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4},{5},{6,7},{8}}
=> {{1,3},{2,7},{4},{5},{6},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5,6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3},{4},{5,6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,1,4] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> {{1,3,7},{2,6},{4,8},{5}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4,5},{6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4,5},{6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6,7},{8}}
=> {{1,3,7},{2,5},{4},{6},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> {{1,3,7},{2,5},{4,8},{6}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3},{4,5,6},{7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3},{4,5,6},{7,8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,4,1] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3},{4,5,6,7},{8}}
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> {{1,3,6},{2,5,8},{4,7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
[1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6},{7},{8}}
=> {{1,3},{2,4},{5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,17,18,19,20,21,28}
Description
The lcs statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcs''' (left-closer-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Matching statistic: St000567
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000567: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 16%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,1}
[2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,3}
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,2,6}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,2,6}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,2,6}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,2,6}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,2,6}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,2,6}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,2,3,3,4,5,10}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 6
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 3
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,2,2,3,3,3,4,4,4,5,5,6,6,7,8,9,15}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 10
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,7,8,8,8,9,9,10,10,11,12,13,14,21}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,7,8,8,8,9,9,10,10,11,12,13,14,21}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 3
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 3
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 10
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 3
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,5] => ([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 6
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 3
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 15
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 3
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 21
Description
The sum of the products of all pairs of parts. This is the evaluation of the second elementary symmetric polynomial which is equal to $$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$ for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1]. This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
Matching statistic: St000681
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000681: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 16%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,1}
[2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,3}
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,3,6}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,3,6}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,5] => ([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 5
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 2
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 6
Description
The Grundy value of Chomp on Ferrers diagrams. Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1]. This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Matching statistic: St000937
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 16%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,1}
[2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,3}
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,3}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,3,6}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,1,1,3,6}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,1,1,3,6}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,1,1,2,3,3,4,5,6,10}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,2,2,3,3,3,3,4,4,5,5,6,6,6,7,8,9,10,15}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,5] => ([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 6
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 2
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 8
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St001118
Mp00184: Integer compositions to threshold graphGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St001118: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 11%
Values
[1] => ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
[1,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
[2] => ([],2)
=> ([],0)
=> ([],0)
=> ? ∊ {0,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,1,3}
[1,2] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,3}
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1,3}
[3] => ([],3)
=> ([],0)
=> ([],0)
=> ? ∊ {0,0,1,3}
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,2,3,6}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,2,3,6}
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,2,3,6}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,2,3,6}
[4] => ([],4)
=> ([],0)
=> ([],0)
=> ? ∊ {0,0,2,3,6}
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
[1,4] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[5] => ([],5)
=> ([],0)
=> ([],0)
=> ? ∊ {0,0,0,1,3,4,5,6,10}
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,8),(4,6),(5,6),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,9),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 3
[1,5] => ([(4,5)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(1,5),(1,6),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,9),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[2,4] => ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> 3
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7)],8)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[6] => ([],6)
=> ([],0)
=> ([],0)
=> ? ∊ {0,0,0,0,1,1,1,2,2,3,4,4,4,5,5,6,6,6,7,8,9,10,15}
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,8,8,8,9,9,10,10,10,11,12,13,14,15,21}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 3
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> 3
Description
The acyclic chromatic index of a graph. An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest. The smallest number of colours such that such a colouring exists is the acyclic chromatic index.