Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000004
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000004: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The major index of a permutation. This is the sum of the positions of its descents, $$\operatorname{maj}(\sigma) = \sum_{\sigma(i) > \sigma(i+1)} i.$$ Its generating function is $[n]_q! = [1]_q \cdot [2]_q \dots [n]_q$ for $[k]_q = 1 + q + q^2 + \dots q^{k-1}$. A statistic equidistributed with the major index is called '''Mahonian statistic'''.
Matching statistic: St000008
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00071: Permutations descent compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [2,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [3,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [2,2] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [2,2] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [2,2] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [2,2] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [3,1] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [4,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [3,2] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [3,2] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [3,2] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [3,2] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,1] => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [4,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [3,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [3,2] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [3,2] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [2,3] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [2,3] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [3,2] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,2,1] => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [2,3] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [2,3] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [3,2] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [2,3] => 2
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
St000018: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [2,3,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [2,3,4,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [2,3,1,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [2,3,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [2,1,4,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [2,1,4,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [2,3,4,1] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [2,3,4,5,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [2,3,5,1,4] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [2,3,4,1,5] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [2,3,4,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [2,3,1,5,4] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [2,3,1,5,4] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [2,3,4,5,1] => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,5,1,3,4] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,1,4,5,3] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [2,3,1,4,5] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [2,3,1,4,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,1,4,5,3] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [3,4,2,5,1] => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [2,3,1,4,5] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [2,3,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [2,1,5,3,4] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [2,1,4,3,5] => 2
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000305
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00066: Permutations inversePermutations
St000305: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [1,3,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [1,4,2,3] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [1,3,4,2] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,3,4] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [1,5,2,3,4] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [1,4,2,3,5] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [1,4,2,3,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [1,4,2,5,3] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [1,3,2,4,5] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [1,3,2,4,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [1,4,2,5,3] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [1,3,2,5,4] => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [1,4,5,2,3] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [1,3,4,2,5] => 2
Description
The inverse major index of a permutation. This is the major index [[St000004]] of the inverse permutation [[Mp00066]].
Matching statistic: St000330
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [[1]]
=> 0
{{1,2}}
=> [2,1] => [1,2] => [[1,2]]
=> 0
{{1},{2}}
=> [1,2] => [1,2] => [[1,2]]
=> 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [[1,2,3]]
=> 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [[1,2,3]]
=> 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [[1,2],[3]]
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [[1,2,3]]
=> 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [[1,2,3],[4]]
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [[1,2,3],[4]]
=> 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [[1,2,4],[3]]
=> 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [[1,2,4],[3]]
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [[1,2,3],[4]]
=> 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [[1,2,3,5],[4]]
=> 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [[1,2,3,5],[4]]
=> 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [[1,2,3],[4,5]]
=> 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [[1,2,3],[4,5]]
=> 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [[1,2,4,5],[3]]
=> 2
Description
The (standard) major index of a standard tableau. A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
St000748: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 3
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 3
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 3
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 4
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 4
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 3
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 3
{{1,2},{3,5},{4}}
=> 4
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 4
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 3
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 6
{{1,3},{2},{4,5}}
=> 2
{{1,3},{2},{4},{5}}
=> 2
{{1,4,5},{2,3}}
=> 3
{{1,4},{2,3,5}}
=> 2
{{1,4},{2,3},{5}}
=> 2
Description
The major index of the permutation obtained by flattening the set partition. A set partition can be represented by a sequence of blocks where the first entries of the blocks and the blocks themselves are increasing. This statistic is then the major index of the permutation obtained by flattening the set partition in this canonical form.
Matching statistic: St000391
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00109: Permutations descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => => ? = 0
{{1,2}}
=> [2,1] => [1,2] => 0 => 0
{{1},{2}}
=> [1,2] => [1,2] => 0 => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 00 => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 00 => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 01 => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 00 => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 00 => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 000 => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 000 => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 001 => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 000 => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 000 => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 001 => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 010 => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 010 => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 010 => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 000 => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 000 => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 010 => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 001 => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 000 => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0000 => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0000 => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 0001 => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0000 => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0000 => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 0001 => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 0010 => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 0010 => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 0010 => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0000 => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0000 => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 0010 => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 0001 => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0000 => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0000 => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 0001 => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 0010 => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 0010 => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 0010 => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 0100 => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 0100 => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 0010 => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 0101 => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 0100 => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 0100 => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 0010 => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 0100 => 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => 0100 => 2
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000833
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00126: Permutations cactus evacuationPermutations
St000833: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => ? = 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [3,1,2,4] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [4,1,2,3,5] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [1,4,2,3,5] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,4,2,3,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,5,2,3,4] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,5,2,3,4] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [3,1,2,4,5] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [1,3,2,4,5] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [1,3,2,4,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [3,5,1,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [1,3,4,2,5] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [1,3,4,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [3,5,1,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [3,1,5,2,4] => 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [1,3,4,2,5] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,3,4,2,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,5,1,2,3] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [1,2,4,3,5] => 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [1,2,4,3,5] => 2
Description
The comajor index of a permutation. This is, $\operatorname{comaj}(\pi) = \sum_{i \in \operatorname{Des}(\pi)} (n-i)$ for a permutation $\pi$ of length $n$.
Matching statistic: St001207
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St001207: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 38%
Values
{{1}}
=> [1] => [1] => [1] => ? = 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [3,4,1,2] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => ? = 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [4,5,1,2,3] => ? = 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => ? = 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => ? = 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,5,2,3,4] => ? = 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,5,2,3,4] => ? = 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => ? = 4
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [3,4,5,1,2] => ? = 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [3,4,1,2,5] => ? = 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [3,4,1,2,5] => ? = 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [5,3,1,2,4] => ? = 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => ? = 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => ? = 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [5,3,1,2,4] => ? = 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [3,5,1,2,4] => ? = 6
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => ? = 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ? = 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,1,5,2,3] => ? = 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => [1,2,5,3,4] => ? = 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,2,3,4] => [1,2,5,3,4] => ? = 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,2,3,5,4] => [5,1,2,3,4] => ? = 4
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => [4,1,5,2,3] => ? = 3
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [1,4,2,5,3] => [1,4,5,2,3] => ? = 6
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 2
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => [5,1,4,2,3] => ? = 6
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,4,5,3] => [4,5,1,2,3] => ? = 4
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,2,4,3,5] => [4,1,2,3,5] => ? = 3
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => ? = 3
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,5,2,3,4] => [1,2,5,3,4] => ? = 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,5,2,3,4] => ? = 3
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,5,2,3,4] => [1,2,5,3,4] => ? = 2
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,5,2,3,4] => ? = 3
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.