Processing math: 100%

Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000008
Mp00248: Permutations DEX compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2] => 0
[2,1] => [2] => 0
[1,2,3] => [3] => 0
[1,3,2] => [1,2] => 1
[2,1,3] => [3] => 0
[2,3,1] => [3] => 0
[3,1,2] => [3] => 0
[3,2,1] => [2,1] => 2
[1,2,3,4] => [4] => 0
[1,2,4,3] => [2,2] => 2
[1,3,2,4] => [1,3] => 1
[1,3,4,2] => [1,3] => 1
[1,4,2,3] => [1,3] => 1
[1,4,3,2] => [1,2,1] => 4
[2,1,3,4] => [4] => 0
[2,1,4,3] => [2,2] => 2
[2,3,1,4] => [4] => 0
[2,3,4,1] => [4] => 0
[2,4,1,3] => [4] => 0
[2,4,3,1] => [3,1] => 3
[3,1,2,4] => [4] => 0
[3,1,4,2] => [2,2] => 2
[3,2,1,4] => [2,2] => 2
[3,2,4,1] => [2,2] => 2
[3,4,1,2] => [4] => 0
[3,4,2,1] => [3,1] => 3
[4,1,2,3] => [4] => 0
[4,1,3,2] => [3,1] => 3
[4,2,1,3] => [2,2] => 2
[4,2,3,1] => [3,1] => 3
[4,3,1,2] => [1,3] => 1
[4,3,2,1] => [1,2,1] => 4
[1,2,3,4,5] => [5] => 0
[1,2,3,5,4] => [3,2] => 3
[1,2,4,3,5] => [2,3] => 2
[1,2,4,5,3] => [2,3] => 2
[1,2,5,3,4] => [2,3] => 2
[1,2,5,4,3] => [2,2,1] => 6
[1,3,2,4,5] => [1,4] => 1
[1,3,2,5,4] => [1,2,2] => 4
[1,3,4,2,5] => [1,4] => 1
[1,3,4,5,2] => [1,4] => 1
[1,3,5,2,4] => [1,4] => 1
[1,3,5,4,2] => [1,3,1] => 5
[1,4,2,3,5] => [1,4] => 1
[1,4,2,5,3] => [1,2,2] => 4
[1,4,3,2,5] => [1,2,2] => 4
[1,4,3,5,2] => [1,2,2] => 4
[1,4,5,2,3] => [1,4] => 1
Description
The major index of the composition. The descents of a composition [c1,c2,,ck] are the partial sums c1,c1+c2,,c1++ck1, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000005
Mp00248: Permutations DEX compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [2] => [1,1,0,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,3,4,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[2,1,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,1,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,3,4,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,1,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[3,1,2,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,1,4,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,4,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,4,2,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,1,2,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,2,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[4,2,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,3,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,3,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,3,2,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,3,4,2,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,4,5,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,4,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,4,2,3,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,2,5,3] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,2,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,5,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,5,2,3] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The bounce statistic of a Dyck path. The '''bounce path''' D of a Dyck path D is the Dyck path obtained from D by starting at the end point (2n,0), traveling north-west until hitting D, then bouncing back south-west to the x-axis, and repeating this procedure until finally reaching the point (0,0). The points where D touches the x-axis are called '''bounce points''', and a bounce path is uniquely determined by its bounce points. This statistic is given by the sum of all i for which the bounce path D of D touches the x-axis at (2i,0). In particular, the bounce statistics of D and D coincide.
Matching statistic: St000081
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> 0
[1,2] => [2] => ([],2)
=> 0
[2,1] => [2] => ([],2)
=> 0
[1,2,3] => [3] => ([],3)
=> 0
[1,3,2] => [1,2] => ([(1,2)],3)
=> 1
[2,1,3] => [3] => ([],3)
=> 0
[2,3,1] => [3] => ([],3)
=> 0
[3,1,2] => [3] => ([],3)
=> 0
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [4] => ([],4)
=> 0
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> 1
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> 1
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> 1
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,1,3,4] => [4] => ([],4)
=> 0
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,3,1,4] => [4] => ([],4)
=> 0
[2,3,4,1] => [4] => ([],4)
=> 0
[2,4,1,3] => [4] => ([],4)
=> 0
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => [4] => ([],4)
=> 0
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[3,4,1,2] => [4] => ([],4)
=> 0
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[4,1,2,3] => [4] => ([],4)
=> 0
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> 1
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> 1
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> 1
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> 1
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> 1
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> 1
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> 1
Description
The number of edges of a graph.
Matching statistic: St001161
Mp00248: Permutations DEX compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [2] => [1,1,0,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,3,4,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[2,1,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,1,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,3,4,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,1,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[3,1,2,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,1,4,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,4,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,4,2,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,1,2,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,2,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[4,2,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,3,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,3,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,3,2,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,3,4,2,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,4,5,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,4,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,4,2,3,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,2,5,3] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,2,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,5,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,5,2,3] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The major index north count of a Dyck path. The descent set des(D) of a Dyck path D=D1D2n with Di{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ides(D)i, see [[St000027]]. The '''major index north count''' is given by ides(D)#{jiDj=N}.
Matching statistic: St000462
St000462: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ? = 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 2
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 4
[2,1,3,4] => 0
[2,1,4,3] => 2
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 3
[3,1,2,4] => 0
[3,1,4,2] => 2
[3,2,1,4] => 2
[3,2,4,1] => 2
[3,4,1,2] => 0
[3,4,2,1] => 3
[4,1,2,3] => 0
[4,1,3,2] => 3
[4,2,1,3] => 2
[4,2,3,1] => 3
[4,3,1,2] => 1
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 3
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 6
[1,3,2,4,5] => 1
[1,3,2,5,4] => 4
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 5
[1,4,2,3,5] => 1
[1,4,2,5,3] => 4
[1,4,3,2,5] => 4
[1,4,3,5,2] => 4
[1,4,5,2,3] => 1
[1,4,5,3,2] => 5
Description
The major index minus the number of excedences of a permutation. This occurs in the context of Eulerian polynomials [1].
Matching statistic: St000947
Mp00248: Permutations DEX compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [2] => [1,1,0,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [3] => [1,1,1,0,0,0]
=> 0
[2,3,1] => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,3,4,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[2,1,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,1,4,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,3,4,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,1,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[3,1,2,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,1,4,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,4,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,4,2,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,1,2,3] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,2,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[4,2,3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4,3,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,3,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,3,2,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,3,4,2,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,4,5,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,4,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,4,2,3,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,2,5,3] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,2,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,3,5,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,4,5,2,3] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,5,3,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
Description
The major index east count of a Dyck path. The descent set des(D) of a Dyck path D=D1D2n with Di{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ides(D)i, see [[St000027]]. The '''major index east count''' is given by ides(D)#{jiDj=E}.