Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00143: Dyck paths inverse promotionDyck paths
St000977: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 8
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 6
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 12
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 12
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 10
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 20
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 16
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 18
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 12
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 14
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 16
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 24
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 10
Description
MacMahon's equal index of a Dyck path. This is the sum of the positions of double (up- or down-)steps of a Dyck path, see [1, p. 135].
Matching statistic: St000008
Mp00093: Dyck paths to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 10 => [1,1] => [2] => 0
[1,0,1,0]
=> 1010 => [1,1,1,1] => [4] => 0
[1,1,0,0]
=> 1100 => [2,2] => [1,2,1] => 4
[1,0,1,0,1,0]
=> 101010 => [1,1,1,1,1,1] => [6] => 0
[1,0,1,1,0,0]
=> 101100 => [1,1,2,2] => [3,2,1] => 8
[1,1,0,0,1,0]
=> 110010 => [2,2,1,1] => [1,2,3] => 4
[1,1,0,1,0,0]
=> 110100 => [2,1,1,2] => [1,4,1] => 6
[1,1,1,0,0,0]
=> 111000 => [3,3] => [1,1,2,1,1] => 12
[1,0,1,0,1,0,1,0]
=> 10101010 => [1,1,1,1,1,1,1,1] => [8] => 0
[1,0,1,0,1,1,0,0]
=> 10101100 => [1,1,1,1,2,2] => [5,2,1] => 12
[1,0,1,1,0,0,1,0]
=> 10110010 => [1,1,2,2,1,1] => [3,2,3] => 8
[1,0,1,1,0,1,0,0]
=> 10110100 => [1,1,2,1,1,2] => [3,4,1] => 10
[1,0,1,1,1,0,0,0]
=> 10111000 => [1,1,3,3] => [3,1,2,1,1] => 20
[1,1,0,0,1,0,1,0]
=> 11001010 => [2,2,1,1,1,1] => [1,2,5] => 4
[1,1,0,0,1,1,0,0]
=> 11001100 => [2,2,2,2] => [1,2,2,2,1] => 16
[1,1,0,1,0,0,1,0]
=> 11010010 => [2,1,1,2,1,1] => [1,4,3] => 6
[1,1,0,1,0,1,0,0]
=> 11010100 => [2,1,1,1,1,2] => [1,6,1] => 8
[1,1,0,1,1,0,0,0]
=> 11011000 => [2,1,2,3] => [1,3,2,1,1] => 18
[1,1,1,0,0,0,1,0]
=> 11100010 => [3,3,1,1] => [1,1,2,1,3] => 12
[1,1,1,0,0,1,0,0]
=> 11100100 => [3,2,1,2] => [1,1,2,3,1] => 14
[1,1,1,0,1,0,0,0]
=> 11101000 => [3,1,1,3] => [1,1,4,1,1] => 16
[1,1,1,1,0,0,0,0]
=> 11110000 => [4,4] => [1,1,1,2,1,1,1] => 24
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => [2,1,1,1,1,1,1,2] => [1,8,1] => 10
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000391
Mp00093: Dyck paths to binary wordBinary words
Mp00269: Binary words flag zeros to zerosBinary words
Mp00104: Binary words reverseBinary words
St000391: Binary words ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 10 => 00 => 00 => 0
[1,0,1,0]
=> 1010 => 0000 => 0000 => 0
[1,1,0,0]
=> 1100 => 0101 => 1010 => 4
[1,0,1,0,1,0]
=> 101010 => 000000 => 000000 => 0
[1,0,1,1,0,0]
=> 101100 => 010100 => 001010 => 8
[1,1,0,0,1,0]
=> 110010 => 000101 => 101000 => 4
[1,1,0,1,0,0]
=> 110100 => 010001 => 100010 => 6
[1,1,1,0,0,0]
=> 111000 => 011011 => 110110 => 12
[1,0,1,0,1,0,1,0]
=> 10101010 => 00000000 => 00000000 => 0
[1,0,1,0,1,1,0,0]
=> 10101100 => 01010000 => 00001010 => 12
[1,0,1,1,0,0,1,0]
=> 10110010 => 00010100 => 00101000 => 8
[1,0,1,1,0,1,0,0]
=> 10110100 => 01000100 => 00100010 => 10
[1,0,1,1,1,0,0,0]
=> 10111000 => 01101100 => 00110110 => 20
[1,1,0,0,1,0,1,0]
=> 11001010 => 00000101 => 10100000 => 4
[1,1,0,0,1,1,0,0]
=> 11001100 => 01010101 => 10101010 => 16
[1,1,0,1,0,0,1,0]
=> 11010010 => 00010001 => 10001000 => 6
[1,1,0,1,0,1,0,0]
=> 11010100 => 01000001 => 10000010 => 8
[1,1,0,1,1,0,0,0]
=> 11011000 => 01101001 => 10010110 => 18
[1,1,1,0,0,0,1,0]
=> 11100010 => 00011011 => 11011000 => 12
[1,1,1,0,0,1,0,0]
=> 11100100 => 01001011 => 11010010 => 14
[1,1,1,0,1,0,0,0]
=> 11101000 => 01100011 => 11000110 => 16
[1,1,1,1,0,0,0,0]
=> 11110000 => 01110111 => 11101110 => 24
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 0100000001 => 1000000010 => ? = 10
Description
The sum of the positions of the ones in a binary word.
Mp00099: Dyck paths bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 18% values known / values provided: 22%distinct values known / distinct values provided: 18%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 8 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 6 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 10 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000068
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000068: Posets ⟶ ℤResult quality: 9% values known / values provided: 17%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4 + 1
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8 + 1
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4 + 1
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6 + 1
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10 + 1
Description
The number of minimal elements in a poset.
Matching statistic: St000071
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000071: Posets ⟶ ℤResult quality: 9% values known / values provided: 17%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4 + 1
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8 + 1
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4 + 1
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6 + 1
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10 + 1
Description
The number of maximal chains in a poset.
Matching statistic: St000100
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000100: Posets ⟶ ℤResult quality: 9% values known / values provided: 17%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4 + 1
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8 + 1
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4 + 1
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6 + 1
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10 + 1
Description
The number of linear extensions of a poset.
Matching statistic: St000527
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000527: Posets ⟶ ℤResult quality: 9% values known / values provided: 17%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4 + 1
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8 + 1
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4 + 1
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6 + 1
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10 + 1
Description
The width of the poset. This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000909
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000909: Posets ⟶ ℤResult quality: 9% values known / values provided: 17%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4 + 1
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8 + 1
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4 + 1
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6 + 1
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10 + 1
Description
The number of maximal chains of maximal size in a poset.
Matching statistic: St000632
Mp00093: Dyck paths to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
Mp00262: Binary words poset of factorsPosets
St000632: Posets ⟶ ℤResult quality: 9% values known / values provided: 13%distinct values known / distinct values provided: 9%
Values
[1,0]
=> 10 => 11 => ([(0,2),(2,1)],3)
=> 0
[1,0,1,0]
=> 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0]
=> 1100 => 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 4
[1,0,1,0,1,0]
=> 101010 => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0]
=> 101100 => 111001 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 8
[1,1,0,0,1,0]
=> 110010 => 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 4
[1,1,0,1,0,0]
=> 110100 => 100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ? = 6
[1,1,1,0,0,0]
=> 111000 => 101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 12
[1,0,1,0,1,0,1,0]
=> 10101010 => 11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> 10101100 => 11111001 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 12
[1,0,1,1,0,0,1,0]
=> 10110010 => 11100111 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,25),(2,26),(3,7),(3,8),(4,1),(4,19),(4,20),(5,2),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,13),(15,14),(16,21),(16,22),(17,11),(17,21),(18,12),(18,22),(19,23),(19,25),(20,24),(20,26),(21,9),(21,15),(22,10),(22,15),(23,16),(23,17),(24,16),(24,18),(25,8),(25,17),(26,7),(26,18)],27)
=> ? = 8
[1,0,1,1,0,1,0,0]
=> 10110100 => 11100001 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 10
[1,0,1,1,1,0,0,0]
=> 10111000 => 11101101 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 20
[1,1,0,0,1,0,1,0]
=> 11001010 => 10011111 => ([(0,6),(0,7),(1,4),(1,17),(2,16),(3,2),(3,23),(4,3),(4,24),(5,9),(5,18),(6,1),(6,15),(6,22),(7,5),(7,15),(7,22),(9,11),(10,12),(11,10),(12,13),(13,8),(14,8),(15,9),(16,14),(17,21),(17,24),(18,11),(18,21),(19,12),(19,20),(20,13),(20,14),(21,10),(21,19),(22,17),(22,18),(23,16),(23,20),(24,19),(24,23)],25)
=> ? = 4
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => ([(0,3),(0,4),(1,21),(1,22),(2,23),(2,24),(3,1),(3,16),(3,17),(4,2),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,8),(12,14),(13,9),(13,14),(14,10),(14,11),(15,12),(15,13),(16,21),(16,23),(17,22),(17,24),(18,7),(18,12),(19,6),(19,13),(20,6),(20,7),(21,15),(21,18),(22,15),(22,19),(23,18),(23,20),(24,19),(24,20)],25)
=> ? = 16
[1,1,0,1,0,0,1,0]
=> 11010010 => 10000111 => ([(0,6),(0,7),(1,2),(1,24),(2,9),(3,5),(3,11),(3,23),(4,18),(4,25),(5,4),(5,17),(5,26),(6,3),(6,12),(6,19),(7,1),(7,12),(7,19),(9,13),(10,16),(11,17),(12,11),(13,14),(14,15),(15,8),(16,8),(17,18),(18,10),(19,23),(19,24),(20,15),(20,16),(21,14),(21,20),(22,13),(22,21),(23,22),(23,26),(24,9),(24,22),(25,10),(25,20),(26,21),(26,25)],27)
=> ? = 6
[1,1,0,1,0,1,0,0]
=> 11010100 => 10000001 => ([(0,6),(0,7),(1,5),(1,9),(1,10),(2,19),(2,20),(3,4),(3,13),(3,14),(4,2),(4,15),(4,16),(5,3),(5,17),(5,18),(6,11),(6,12),(7,1),(7,11),(7,12),(9,18),(10,17),(11,10),(12,9),(13,15),(14,16),(15,19),(16,20),(17,13),(18,14),(19,8),(20,8)],21)
=> ? = 8
[1,1,0,1,1,0,0,0]
=> 11011000 => 10001101 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 18
[1,1,1,0,0,0,1,0]
=> 11100010 => 10110111 => ([(0,3),(0,4),(1,12),(2,1),(2,18),(2,22),(3,20),(3,21),(4,2),(4,20),(4,21),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,7),(13,14),(13,15),(14,9),(14,16),(15,8),(15,16),(16,10),(16,11),(17,13),(17,23),(18,13),(18,19),(19,6),(19,15),(20,17),(20,18),(21,17),(21,22),(22,12),(22,19),(22,23),(23,6),(23,7),(23,14)],24)
=> ? = 12
[1,1,1,0,0,1,0,0]
=> 11100100 => 10110001 => ([(0,4),(0,5),(1,23),(1,24),(2,3),(2,16),(2,25),(3,8),(3,19),(4,1),(4,26),(4,27),(5,2),(5,26),(5,27),(7,11),(8,10),(9,7),(10,12),(11,13),(12,14),(13,15),(14,6),(15,6),(16,8),(17,11),(17,20),(18,20),(18,21),(19,10),(19,21),(20,13),(20,22),(21,12),(21,22),(22,14),(22,15),(23,7),(23,17),(24,17),(24,18),(25,18),(25,19),(26,9),(26,24),(26,25),(27,9),(27,16),(27,23)],28)
=> ? = 14
[1,1,1,0,1,0,0,0]
=> 11101000 => 10111101 => ([(0,4),(0,5),(1,3),(1,17),(1,18),(2,23),(2,24),(3,2),(3,21),(3,22),(4,19),(4,20),(5,1),(5,19),(5,20),(7,12),(8,11),(9,13),(10,14),(11,9),(12,10),(13,6),(14,6),(15,7),(15,8),(16,13),(16,14),(17,8),(17,21),(18,7),(18,22),(19,15),(19,17),(20,15),(20,18),(21,11),(21,23),(22,12),(22,24),(23,9),(23,16),(24,10),(24,16)],25)
=> ? = 16
[1,1,1,1,0,0,0,0]
=> 11110000 => 10100101 => ([(0,2),(0,3),(1,17),(1,18),(2,22),(2,23),(3,1),(3,22),(3,23),(5,10),(6,9),(7,11),(8,12),(9,7),(10,8),(11,4),(12,4),(13,20),(13,21),(14,11),(14,12),(15,9),(15,20),(16,10),(16,21),(17,13),(17,15),(18,13),(18,16),(19,5),(19,6),(20,7),(20,14),(21,8),(21,14),(22,17),(22,19),(22,24),(23,18),(23,19),(23,24),(24,5),(24,6),(24,15),(24,16)],25)
=> ? = 24
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1000000001 => ([(0,8),(0,9),(1,7),(1,11),(1,12),(2,25),(2,26),(3,4),(3,15),(3,16),(4,6),(4,17),(4,18),(5,3),(5,19),(5,20),(6,2),(6,21),(6,22),(7,5),(7,23),(7,24),(8,13),(8,14),(9,1),(9,13),(9,14),(11,24),(12,23),(13,12),(14,11),(15,17),(16,18),(17,21),(18,22),(19,15),(20,16),(21,25),(22,26),(23,19),(24,20),(25,10),(26,10)],27)
=> ? = 10
Description
The jump number of the poset. A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000748The major index of the permutation obtained by flattening the set partition. St001160The number of proper blocks (or intervals) of a permutations. St001330The hat guessing number of a graph. St001565The number of arithmetic progressions of length 2 in a permutation.