searching the database
Your data matches 48 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000011
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000203
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000203: Binary trees ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000203: Binary trees ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => [.,.]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [.,[.,.]]
=> 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [.,[.,.]]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [.,[.,[.,.]]]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [.,[.,[.,.]]]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [.,[[.,.],.]]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 9 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,5,6,7,8,2,3,4] => [.,[[.,[.,[.,.]]],[.,[.,[.,.]]]]]
=> ? = 6 - 1
[]
=> [] => [] => .
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,9,2,8,3,7,4,6,5] => ?
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> ? = 11 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,2,3,4,5,9,6,7,8] => [.,[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]]
=> ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 10 - 1
Description
The number of external nodes of a binary tree.
That is, the number of nodes that can be reached from the root by only left steps or only right steps, plus $1$ for the root node itself. A counting formula for the number of external node in all binary trees of size $n$ can be found in [1].
Matching statistic: St000998
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000998: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000998: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 2
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 3
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 9
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 9
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 9
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 6
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 3
[]
=> [] => []
=> []
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 10
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 10
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 11
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 10
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 10
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 10
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 10
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 10
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 10
Description
Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001012
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001012: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001012: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 2
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 3
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 9
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 9
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 9
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 9
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 9
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 9
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 6
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
[]
=> [] => []
=> []
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 10
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 10
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ? = 10
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 11
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 10
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 10
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 10
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> ? = 10
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 10
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 10
Description
Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001068
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,5,6,7,8,2,3,4] => [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,8,2,7,3,6,4,5] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3 - 1
[]
=> [] => [] => []
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,9,2,8,3,7,4,6,5] => ?
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 11 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,2,3,4,5,9,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Matching statistic: St000053
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 94%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0 = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,5,6,7,8,2,3,4] => [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,8,2,7,3,6,4,5] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3 - 2
[]
=> [] => [] => []
=> ? = 1 - 2
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,9,2,8,3,7,4,6,5] => ?
=> ? = 3 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 11 - 2
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,2,3,4,5,9,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
Description
The number of valleys of the Dyck path.
Matching statistic: St001499
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 55% ●values known / values provided: 94%●distinct values known / distinct values provided: 55%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 55% ●values known / values provided: 94%●distinct values known / distinct values provided: 55%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 2
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,5,6,7,8,2,3,4] => [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,8,2,7,3,6,4,5] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3 - 2
[]
=> [] => [] => []
=> ? = 1 - 2
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,9,2,8,3,7,4,6,5] => ?
=> ? = 3 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 11 - 2
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,2,3,4,5,9,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 2
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra.
We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Matching statistic: St001654
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001654: Graphs ⟶ ℤResult quality: 64% ●values known / values provided: 92%●distinct values known / distinct values provided: 64%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001654: Graphs ⟶ ℤResult quality: 64% ●values known / values provided: 92%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 8 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 8 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7 - 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6)],7)
=> ([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ([(0,6),(6,7),(7,1),(7,2),(7,3),(7,4),(7,5)],8)
=> ?
=> ? = 9 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 9 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 9 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 9 - 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(1,6),(2,6),(2,7),(3,1),(3,7),(4,5),(5,2),(5,3)],8)
=> ?
=> ? = 6 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(6,7)],8)
=> ?
=> ? = 3 - 1
[]
=> []
=> ?
=> ?
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(7,8)],9)
=> ?
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ([],9)
=> ?
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8)],9)
=> ?
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(8,2)],9)
=> ?
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ([],10)
=> ?
=> ? = 11 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ?
=> ? = 10 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 10 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,8),(1,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,7)],9)
=> ?
=> ? = 10 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 10 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 10 - 1
Description
The monophonic hull number of a graph.
The monophonic hull of a set of vertices $M$ of a graph $G$ is the set of vertices that lie on at least one induced path between vertices in $M$. The monophonic hull number is the size of the smallest set $M$ such that the monophonic hull of $M$ is all of $G$.
For example, the monophonic hull number of a graph $G$ with $n$ vertices is $n$ if and only if $G$ is a disjoint union of complete graphs.
Matching statistic: St001461
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 64% ●values known / values provided: 91%●distinct values known / distinct values provided: 64%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 64% ●values known / values provided: 91%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => [1] => 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [1,2] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,3,2] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,4,3,2] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => [1,3,4,2] => 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 4 - 1
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [3,2,4,5,1,7,6] => [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => ? = 7 - 1
[1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,4,3,5,2,7,1] => [1,6,7,2,4,5,3] => [1,4,7,5,3,6,2] => ? = 4 - 1
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => [1,6,2,5,3,4,7] => [1,5,4,6,3,2,7] => ? = 4 - 1
[1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [6,5,3,4,2,7,1] => [1,6,7,2,5,3,4] => [1,5,4,7,3,6,2] => ? = 4 - 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => [1,6,2,5,3,4,7] => [1,5,4,6,3,2,7] => ? = 4 - 1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [1,6,7,2,5,3,4] => [1,5,4,7,3,6,2] => ? = 4 - 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => [1,7,2,6,3,4,5] => [1,6,4,5,7,3,2] => ? = 3 - 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => [1,7,2,6,3,5,4] => [1,6,5,7,4,3,2] => ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,4,6,7,5,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 9 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => [1,5,6,7,8,2,3,4] => [1,3,4,8,5,6,7,2] => ? = 6 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => [1,8,2,7,3,6,4,5] => [1,7,6,5,8,4,3,2] => ? = 3 - 1
[]
=> [] => [] => [] => ? = 1 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => [1,9,2,8,3,7,4,6,5] => [1,8,7,6,9,5,4,3,2] => ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,2] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => ? = 11 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,3,4,9,6,7,8,5] => [1,2,3,4,5,9,6,7,8] => [1,2,3,4,5,7,8,9,6] => ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,2,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => ? = 10 - 1
Description
The number of topologically connected components of the chord diagram of a permutation.
The chord diagram of a permutation $\pi\in\mathfrak S_n$ is obtained by placing labels $1,\dots,n$ in cyclic order on a cycle and drawing a (straight) arc from $i$ to $\pi(i)$ for every label $i$.
This statistic records the number of topologically connected components in the chord diagram. In particular, if two arcs cross, all four labels connected by the two arcs are in the same component.
The permutation $\pi\in\mathfrak S_n$ stabilizes an interval $I=\{a,a+1,\dots,b\}$ if $\pi(I)=I$. It is stabilized-interval-free, if the only interval $\pi$ stablizes is $\{1,\dots,n\}$. Thus, this statistic is $1$ if $\pi$ is stabilized-interval-free.
Matching statistic: St000439
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 4 + 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 5 + 1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 6 + 1
[1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 4 + 1
[1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 3 + 1
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> ? = 5 + 1
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> ? = 5 + 1
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> ? = 5 + 1
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> ? = 5 + 1
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 4 + 1
Description
The position of the first down step of a Dyck path.
The following 38 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000031The number of cycles in the cycle decomposition of a permutation. St000678The number of up steps after the last double rise of a Dyck path. St000160The multiplicity of the smallest part of a partition. St000475The number of parts equal to 1 in a partition. St000007The number of saliances of the permutation. St000025The number of initial rises of a Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St000314The number of left-to-right-maxima of a permutation. St000015The number of peaks of a Dyck path. St000542The number of left-to-right-minima of a permutation. St000991The number of right-to-left minima of a permutation. St000331The number of upper interactions of a Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000469The distinguishing number of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001691The number of kings in a graph. St000907The number of maximal antichains of minimal length in a poset. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000315The number of isolated vertices of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St000717The number of ordinal summands of a poset. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000942The number of critical left to right maxima of the parking functions. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!