searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000008
Mp00178: Binary words —to composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => 0
1 => [1,1] => 1
00 => [3] => 0
01 => [2,1] => 2
10 => [1,2] => 1
11 => [1,1,1] => 3
000 => [4] => 0
001 => [3,1] => 3
010 => [2,2] => 2
011 => [2,1,1] => 5
100 => [1,3] => 1
101 => [1,2,1] => 4
110 => [1,1,2] => 3
111 => [1,1,1,1] => 6
0000 => [5] => 0
0001 => [4,1] => 4
0010 => [3,2] => 3
0011 => [3,1,1] => 7
0100 => [2,3] => 2
0101 => [2,2,1] => 6
0110 => [2,1,2] => 5
0111 => [2,1,1,1] => 9
1000 => [1,4] => 1
1001 => [1,3,1] => 5
1010 => [1,2,2] => 4
1011 => [1,2,1,1] => 8
1100 => [1,1,3] => 3
1101 => [1,1,2,1] => 7
1110 => [1,1,1,2] => 6
1111 => [1,1,1,1,1] => 10
00000 => [6] => 0
00001 => [5,1] => 5
00010 => [4,2] => 4
00011 => [4,1,1] => 9
00100 => [3,3] => 3
00101 => [3,2,1] => 8
00110 => [3,1,2] => 7
00111 => [3,1,1,1] => 12
01000 => [2,4] => 2
01001 => [2,3,1] => 7
01010 => [2,2,2] => 6
01011 => [2,2,1,1] => 11
01100 => [2,1,3] => 5
01101 => [2,1,2,1] => 10
01110 => [2,1,1,2] => 9
01111 => [2,1,1,1,1] => 14
10000 => [1,5] => 1
10001 => [1,4,1] => 6
10010 => [1,3,2] => 5
10011 => [1,3,1,1] => 10
Description
The major index of the composition.
The descents of a composition [c1,c2,…,ck] are the partial sums c1,c1+c2,…,c1+⋯+ck−1, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000012
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' (a1,…,an) such that a1=0,ak+1≤ak+1.
2. The generating function Dn(q)=∑D∈Dnqarea(D) satisfy the recurrence Dn+1(q)=∑qkDk(q)Dn−k(q).
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
Matching statistic: St000391
St000391: Binary words ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
0 => 0
1 => 1
00 => 0
01 => 2
10 => 1
11 => 3
000 => 0
001 => 3
010 => 2
011 => 5
100 => 1
101 => 4
110 => 3
111 => 6
0000 => 0
0001 => 4
0010 => 3
0011 => 7
0100 => 2
0101 => 6
0110 => 5
0111 => 9
1000 => 1
1001 => 5
1010 => 4
1011 => 8
1100 => 3
1101 => 7
1110 => 6
1111 => 10
00000 => 0
00001 => 5
00010 => 4
00011 => 9
00100 => 3
00101 => 8
00110 => 7
00111 => 12
01000 => 2
01001 => 7
01010 => 6
01011 => 11
01100 => 5
01101 => 10
01110 => 9
01111 => 14
10000 => 1
10001 => 6
10010 => 5
10011 => 10
=> ? = 0
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St001161
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 10
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
Description
The major index north count of a Dyck path.
The descent set des(D) of a Dyck path D=D1⋯D2n with Di∈{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ∑i∈des(D)i, see [[St000027]].
The '''major index north count''' is given by ∑i∈des(D)#{j≤i∣Dj=N}.
Matching statistic: St000947
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 91% ●values known / values provided: 91%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 91% ●values known / values provided: 91%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 10
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
=> [1] => [1,0]
=> ? = 0
Description
The major index east count of a Dyck path.
The descent set des(D) of a Dyck path D=D1⋯D2n with Di∈{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ∑i∈des(D)i, see [[St000027]].
The '''major index east count''' is given by ∑i∈des(D)#{j≤i∣Dj=E}.
Matching statistic: St000492
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000492: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000492: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> {{1,2,3,4,5},{6},{7,8}}
=> ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> {{1,2,3,4},{5},{6,7,8}}
=> ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> {{1,2,3,4},{5},{6},{7,8}}
=> ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5,6},{7,8}}
=> ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5},{6,7,8}}
=> ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4,5},{6},{7,8}}
=> ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2,3},{4},{5,6},{7,8}}
=> ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2,3},{4},{5},{6,7,8}}
=> ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5},{6},{7,8}}
=> ? = 18
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2},{3,4,5,6},{7,8}}
=> ? = 8
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 7
0100110 => [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2},{3,4,5},{6},{7,8}}
=> ? = 13
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4},{5,6,7,8}}
=> ? = 6
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 12
0101100 => [2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3,4},{5},{6,7,8}}
=> ? = 11
0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3,4},{5},{6},{7,8}}
=> ? = 17
0110000 => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3},{4,5,6,7,8}}
=> ? = 5
0110010 => [2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2},{3},{4,5,6},{7,8}}
=> ? = 11
0110100 => [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5},{6,7,8}}
=> ? = 10
0110110 => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5},{6},{7,8}}
=> ? = 16
0111000 => [2,1,1,4] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 9
0111010 => [2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6},{7,8}}
=> ? = 15
0111100 => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> ? = 14
0111110 => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 20
1000010 => [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> ? = 7
1000100 => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ? = 6
1000110 => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> {{1},{2,3,4,5},{6},{7,8}}
=> ? = 12
1001000 => [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4},{5,6,7,8}}
=> ? = 5
1001010 => [1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6},{7,8}}
=> ? = 11
1001100 => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3,4},{5},{6,7,8}}
=> ? = 10
1001110 => [1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3,4},{5},{6},{7,8}}
=> ? = 16
1010000 => [1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 4
1010010 => [1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3},{4,5,6},{7,8}}
=> ? = 10
1010100 => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> ? = 9
1010110 => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4,5},{6},{7,8}}
=> ? = 15
1011000 => [1,2,1,4] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 8
1011010 => [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6},{7,8}}
=> ? = 14
1011100 => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ? = 13
1011110 => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 19
1100010 => [1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1},{2},{3,4,5,6},{7,8}}
=> ? = 9
1100100 => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 8
1100110 => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1},{2},{3,4,5},{6},{7,8}}
=> ? = 14
1101000 => [1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 7
1101010 => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 13
1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4},{5},{6,7,8}}
=> ? = 12
Description
The rob statistic of a set partition.
Let S=B1,…,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b.
According to [1, Definition 3], a '''rob''' (right-opener-bigger) of S is given by a pair i<j such that j=minBb and i∈Ba for a<b.
This is also the number of occurrences of the pattern {{1}, {2}}, such that 2 is the minimal element of a block.
Matching statistic: St000499
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000499: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000499: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> {{1,2,3,4,5},{6},{7,8}}
=> ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> {{1,2,3,4},{5},{6,7,8}}
=> ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> {{1,2,3,4},{5},{6},{7,8}}
=> ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5,6},{7,8}}
=> ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5},{6,7,8}}
=> ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4,5},{6},{7,8}}
=> ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2,3},{4},{5,6},{7,8}}
=> ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2,3},{4},{5},{6,7,8}}
=> ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5},{6},{7,8}}
=> ? = 18
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2},{3,4,5,6},{7,8}}
=> ? = 8
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 7
0100110 => [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2},{3,4,5},{6},{7,8}}
=> ? = 13
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4},{5,6,7,8}}
=> ? = 6
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 12
0101100 => [2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3,4},{5},{6,7,8}}
=> ? = 11
0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3,4},{5},{6},{7,8}}
=> ? = 17
0110000 => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3},{4,5,6,7,8}}
=> ? = 5
0110010 => [2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2},{3},{4,5,6},{7,8}}
=> ? = 11
0110100 => [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5},{6,7,8}}
=> ? = 10
0110110 => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5},{6},{7,8}}
=> ? = 16
0111000 => [2,1,1,4] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 9
0111010 => [2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6},{7,8}}
=> ? = 15
0111100 => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> ? = 14
0111110 => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 20
1000010 => [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> ? = 7
1000100 => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ? = 6
1000110 => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> {{1},{2,3,4,5},{6},{7,8}}
=> ? = 12
1001000 => [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4},{5,6,7,8}}
=> ? = 5
1001010 => [1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6},{7,8}}
=> ? = 11
1001100 => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3,4},{5},{6,7,8}}
=> ? = 10
1001110 => [1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3,4},{5},{6},{7,8}}
=> ? = 16
1010000 => [1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 4
1010010 => [1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3},{4,5,6},{7,8}}
=> ? = 10
1010100 => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> ? = 9
1010110 => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4,5},{6},{7,8}}
=> ? = 15
1011000 => [1,2,1,4] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 8
1011010 => [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6},{7,8}}
=> ? = 14
1011100 => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ? = 13
1011110 => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 19
1100010 => [1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1},{2},{3,4,5,6},{7,8}}
=> ? = 9
1100100 => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 8
1100110 => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1},{2},{3,4,5},{6},{7,8}}
=> ? = 14
1101000 => [1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 7
1101010 => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 13
1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4},{5},{6,7,8}}
=> ? = 12
Description
The rcb statistic of a set partition.
Let S=B1,…,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b.
According to [1, Definition 3], a '''rcb''' (right-closer-bigger) of S is given by a pair i<j such that j=maxBb and i∈Ba for a<b.
Matching statistic: St000579
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000579: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000579: Set partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> {{1,2,3,4,5},{6},{7,8}}
=> ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> {{1,2,3,4},{5},{6,7,8}}
=> ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> {{1,2,3,4},{5},{6},{7,8}}
=> ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5,6},{7,8}}
=> ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5},{6,7,8}}
=> ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4,5},{6},{7,8}}
=> ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2,3},{4},{5,6},{7,8}}
=> ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2,3},{4},{5},{6,7,8}}
=> ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5},{6},{7,8}}
=> ? = 18
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2},{3,4,5,6},{7,8}}
=> ? = 8
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 7
0100110 => [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2},{3,4,5},{6},{7,8}}
=> ? = 13
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4},{5,6,7,8}}
=> ? = 6
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 12
0101100 => [2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3,4},{5},{6,7,8}}
=> ? = 11
0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3,4},{5},{6},{7,8}}
=> ? = 17
0110000 => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3},{4,5,6,7,8}}
=> ? = 5
0110010 => [2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1,2},{3},{4,5,6},{7,8}}
=> ? = 11
0110100 => [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5},{6,7,8}}
=> ? = 10
0110110 => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5},{6},{7,8}}
=> ? = 16
0111000 => [2,1,1,4] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 9
0111010 => [2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6},{7,8}}
=> ? = 15
0111100 => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> ? = 14
0111110 => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 20
1000010 => [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> ? = 7
1000100 => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ? = 6
1000110 => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> {{1},{2,3,4,5},{6},{7,8}}
=> ? = 12
1001000 => [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4},{5,6,7,8}}
=> ? = 5
1001010 => [1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6},{7,8}}
=> ? = 11
1001100 => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3,4},{5},{6,7,8}}
=> ? = 10
1001110 => [1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3,4},{5},{6},{7,8}}
=> ? = 16
1010000 => [1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 4
1010010 => [1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3},{4,5,6},{7,8}}
=> ? = 10
1010100 => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> ? = 9
1010110 => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4,5},{6},{7,8}}
=> ? = 15
1011000 => [1,2,1,4] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 8
1011010 => [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6},{7,8}}
=> ? = 14
1011100 => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ? = 13
1011110 => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 19
1100010 => [1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1},{2},{3,4,5,6},{7,8}}
=> ? = 9
1100100 => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 8
1100110 => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1},{2},{3,4,5},{6},{7,8}}
=> ? = 14
1101000 => [1,1,2,4] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 7
1101010 => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 13
1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4},{5},{6,7,8}}
=> ? = 12
Description
The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element.
This is the number of pairs i<j in different blocks such that j is the maximal element of a block.
Matching statistic: St000081
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
010 => [2,2] => ([(1,3),(2,3)],4)
=> 2
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 2
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 2
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 14
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
0000000 => [8] => ([],8)
=> ? = 0
0000010 => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6
0000100 => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5
0000110 => [5,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
0001000 => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 4
0001010 => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10
0001100 => [4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
0001110 => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
0010000 => [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? = 3
0010010 => [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
0010100 => [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 8
0010110 => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 14
0011000 => [3,1,4] => ([(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
0011010 => [3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
0011100 => [3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
0011110 => [3,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
0100000 => [2,6] => ([(5,7),(6,7)],8)
=> ? = 2
0100010 => [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 8
0100100 => [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
0100110 => [2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
0101000 => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
0101010 => [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
0101100 => [2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
0101110 => [2,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
0110000 => [2,1,5] => ([(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
0110010 => [2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
0110100 => [2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10
0110110 => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 16
0111000 => [2,1,1,4] => ([(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
0111010 => [2,1,1,2,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
0111100 => [2,1,1,1,3] => ([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 14
0111110 => [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20
1000000 => [1,7] => ([(6,7)],8)
=> ? = 1
1000010 => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
1000100 => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
1000110 => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
1001000 => [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
1001010 => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
1001100 => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10
1001110 => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 16
1010000 => [1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
1010010 => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10
1010100 => [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
1010110 => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
1011000 => [1,2,1,4] => ([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 8
1011010 => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 14
1011100 => [1,2,1,1,3] => ([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
1011110 => [1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
1100000 => [1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 3
1100010 => [1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
Description
The number of edges of a graph.
Matching statistic: St001671
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001671: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 91%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001671: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 91%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 10
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 7
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 6
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => ? = 12
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 5
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => ? = 11
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 10
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,3,5,6,7,4] => ? = 16
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 4
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 10
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 9
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 15
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 8
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 14
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 13
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 19
110000 => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 9
110010 => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 8
110011 => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 14
110100 => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 7
110101 => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 13
110110 => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 12
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 18
111000 => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 6
111001 => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,4,1,5,7,6] => ? = 12
111010 => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 11
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 17
111100 => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ? = 10
111101 => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,1,7,6] => ? = 16
111110 => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => ? = 15
111111 => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => ? = 21
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ? = 0
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,5,7,6,8] => ? = 6
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,4,6,5,7,8] => ? = 5
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,4,6,7,5,8] => ? = 11
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,3,5,4,6,7,8] => ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6,8] => ? = 10
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,3,5,6,4,7,8] => ? = 9
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,6,7,4,8] => ? = 15
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,4,3,5,6,7,8] => ? = 3
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5,7,6,8] => ? = 9
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,6,5,7,8] => ? = 8
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,6,7,5,8] => ? = 14
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,4,5,3,6,7,8] => ? = 7
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6,8] => ? = 13
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,6,3,7,8] => ? = 12
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,7,3,8] => ? = 18
0100000 => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => ? = 2
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => ? = 8
Description
Haglund's hag of a permutation.
Let edif be the sum of the differences of exceedence tops and bottoms, let πE the subsequence of exceedence tops and let πN be the subsequence of non-exceedence tops. Finally, let L be the number of pairs of indices k<i such that πk≤i<πi.
Then hag(π)=edif+inv(πE)−inv(πN)+L, where inv denotes the number of inversions of a word.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000005The bounce statistic of a Dyck path. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000796The stat' of a permutation. St000798The makl of a permutation. St000833The comajor index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001311The cyclomatic number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!