searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000352
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
St000352: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
St000352: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1
Description
The Elizalde-Pak rank of a permutation.
This is the largest $k$ such that $\pi(i) > k$ for all $i\leq k$.
According to [1], the length of the longest increasing subsequence in a $321$-avoiding permutation is equidistributed with the rank of a $132$-avoiding permutation.
Matching statistic: St000703
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
St000703: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
St000703: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1
Description
The number of deficiencies of a permutation.
This is defined as
$$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$
The number of exceedances is [[St000155]].
Matching statistic: St000994
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
St000994: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
St000994: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1
Description
The number of cycle peaks and the number of cycle valleys of a permutation.
A '''cycle peak''' of a permutation $\pi$ is an index $i$ such that $\pi^{-1}(i) < i > \pi(i)$. Analogously, a '''cycle valley''' is an index $i$ such that $\pi^{-1}(i) > i < \pi(i)$.
Clearly, every cycle of $\pi$ contains as many peaks as valleys.
Matching statistic: St001269
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
St001269: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
St001269: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1
Description
The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation.
Matching statistic: St001729
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
St001729: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
St001729: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1
Description
The number of visible descents of a permutation.
A visible descent of a permutation $\pi$ is a position $i$ such that $\pi(i+1) \leq \min(i, \pi(i))$.
Matching statistic: St000021
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000021: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000021: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [2,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,1,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [2,4,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [2,5,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => [4,2,3,5,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => [5,1,3,4,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [3,2,4,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [2,4,1,3,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [4,1,2,3,5] => 1
Description
The number of descents of a permutation.
This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Matching statistic: St000035
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000035: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000035: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [2,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,1,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [2,4,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [2,5,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => [4,2,3,5,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => [5,1,3,4,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [3,2,4,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [2,4,1,3,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [4,1,2,3,5] => 1
Description
The number of left outer peaks of a permutation.
A left outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$.
In other words, it is a peak in the word $[0,w_1,..., w_n]$.
This appears in [1, def.3.1]. The joint distribution with [[St000366]] is studied in [3], where left outer peaks are called ''exterior peaks''.
Matching statistic: St000155
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000155: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000155: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [4,3,1,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => [4,3,1,2] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [4,2,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [4,2,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [5,3,2,1,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [5,2,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => [5,4,2,3,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => [5,4,1,3,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [5,3,2,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [4,3,1,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => [4,3,1,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [4,2,1,3,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [4,1,2,3,5] => 1
Description
The number of exceedances (also excedences) of a permutation.
This is defined as $exc(\sigma) = \#\{ i : \sigma(i) > i \}$.
It is known that the number of exceedances is equidistributed with the number of descents, and that the bistatistic $(exc,den)$ is [[Permutations/Descents-Major#Euler-Mahonian_statistics|Euler-Mahonian]]. Here, $den$ is the Denert index of a permutation, see [[St000156]].
Matching statistic: St000884
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000884: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000884: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => [4,1,3,2] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [2,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,1,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [2,4,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [2,5,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [3,5,1,4,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => [4,2,3,5,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => [5,1,3,4,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,1,4,2,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => [4,2,5,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [3,2,5,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [3,2,4,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => [5,1,3,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [2,4,1,3,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [4,1,2,3,5] => 1
Description
The number of isolated descents of a permutation.
A descent $i$ is isolated if neither $i+1$ nor $i-1$ are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Matching statistic: St001665
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00277: Permutations —catalanization⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St001665: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00277: Permutations —catalanization⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St001665: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [4,3,1,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,4,2,1] => [4,3,1,2] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [4,2,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [4,2,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [5,3,2,1,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [5,2,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [5,4,3,1,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,3,4,2,1] => [5,4,2,3,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,5,4,2,1] => [5,4,1,3,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,4,5,2,1] => [5,4,1,2,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [5,3,2,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [4,3,1,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,4,2,5,1] => [5,3,1,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,4,2,1,5] => [4,3,1,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [4,2,1,3,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [4,1,2,3,5] => 1
Description
The number of pure excedances of a permutation.
A pure excedance of a permutation $\pi$ is a position $i < \pi_i$ such that there is no $j < i$ with $i\leq \pi_j < \pi_i$.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001928The number of non-overlapping descents in a permutation. St000325The width of the tree associated to a permutation. St000470The number of runs in a permutation. St000264The girth of a graph, which is not a tree. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001624The breadth of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!