Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 4
Description
The number of initial rises of a Dyck path. In other words, this is the height of the first peak of $D$.
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> 2 = 1 + 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> 2 = 1 + 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> 3 = 2 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000011
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000382
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1] => 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [2] => 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1] => 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,2] => 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3] => 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3] => 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
Description
The first part of an integer composition.
Matching statistic: St000971
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000971: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> {{1}}
=> 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
Description
The smallest closer of a set partition. A closer (or right hand endpoint) of a set partition is a number that is maximal in its block. For this statistic, singletons are considered as closers. In other words, this is the smallest among the maximal elements of the blocks.
Matching statistic: St000069
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St000069: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> ([],1)
=> 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ([],2)
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,5),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 2
[[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,-1,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,0,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,-1,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[1,-1,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[1,0,0,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[1,0,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
[[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7)
=> ? = 2
Description
The number of maximal elements of a poset.
Matching statistic: St000010
Mp00004: Alternating sign matrices rotate clockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> []
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> []
=> 0 = 1 - 1
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2 = 3 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3 = 4 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,-1,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? = 6 - 1
[[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 7 - 1
[[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 7 - 1
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> ? = 7 - 1
[[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 7 - 1
Description
The length of the partition.
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
St000054: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,2] => 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [2,1] => 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3,1,2] => 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3,1,2] => 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,0,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,0,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,-1,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,1,-1,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ? = 2
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => ? = 3
[[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 4
Description
The first entry of the permutation. This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1]. This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals $$ \frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1). $$
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000542: Permutations ⟶ ℤResult quality: 86% values known / values provided: 98%distinct values known / distinct values provided: 86%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,2] => 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [2,1] => 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,-1,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 2
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 2
Description
The number of left-to-right-minima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Matching statistic: St000653
Mp00004: Alternating sign matrices rotate clockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000653: Permutations ⟶ ℤResult quality: 86% values known / values provided: 98%distinct values known / distinct values provided: 86%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => ? = 1 - 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 0 = 1 - 1
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 3 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 3 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3 = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3 = 4 - 1
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,-1,1,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,-1,0,1,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,-1,0,1,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,0,1,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,0,1,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,0,1,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[1,-1,0,1,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 2 - 1
[[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,0,0,1,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
Description
The last descent of a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the largest index $0 \leq i < n$ such that $\pi(i) > \pi(i+1)$ where one considers $\pi(0) = n+1$.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000740The last entry of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000989The number of final rises of a permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000297The number of leading ones in a binary word. St000738The first entry in the last row of a standard tableau. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000061The number of nodes on the left branch of a binary tree. St001480The number of simple summands of the module J^2/J^3. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix.