searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000028
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [3,1,4,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,4,2,5,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [2,3,5,4,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [2,4,1,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [2,4,5,3,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,5,4,3,1] => 2
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St000451
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [2,4,1,3,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2,5] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [2,3,4,1,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,3,5,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,5,1,2,4] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 3 = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,1,3,5,6,7] => [3,1,4,2,5,6,7] => ? = 2 + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [2,3,4,6,1,5,7] => ? = 2 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [2,3,5,6,1,4,7] => ? = 2 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [2,4,5,6,1,3,7] => ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [3,4,5,6,1,2,7] => ? = 2 + 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 4 + 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => [2,1,4,5,6,7,3] => ? = 1 + 1
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [4,5,1,6,2,7,3,8] => [3,5,7,1,2,4,6,8] => ? = 4 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [2,5,6,1,7,3,4,8] => [4,1,6,7,2,3,5,8] => ? = 3 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,1,2,7,3,4,5,8] => [2,3,5,6,7,1,4,8] => ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => [4,5,6,7,1,2,3,8] => ? = 3 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,7,2,3,4,5,8] => [2,4,5,6,7,1,3,8] => ? = 2 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,1,2,3,4,5,8] => [3,4,5,6,7,1,2,8] => ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5,8,7] => [2,4,1,3,6,5,8,7] => ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [4,1,2,3,6,5,8,7] => [2,3,4,1,6,5,8,7] => ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,8,7] => [2,1,4,6,3,5,8,7] => ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0]
=> [4,1,2,6,3,5,8,7] => [2,3,5,1,6,4,8,7] => ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,6,3,4,5,8,7] => [2,1,4,5,6,3,8,7] => ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => [1,2,8,3,4,5,6,7] => ? = 5 + 1
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,7,8,3] => [2,5,8,1,3,4,6,7] => ? = 5 + 1
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,8,6] => [2,1,4,3,6,8,5,7] => ? = 2 + 1
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [3,1,4,2,7,5,8,6] => [2,4,1,3,6,8,5,7] => ? = 2 + 1
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [5,1,2,3,7,4,8,6] => [2,3,4,6,1,8,5,7] => ? = 2 + 1
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [2,5,1,6,7,3,8,4] => [3,1,6,8,2,4,5,7] => ? = 4 + 1
[1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,8,5] => [4,1,6,2,8,3,5,7] => ? = 3 + 1
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [6,1,7,2,3,4,8,5] => [2,4,5,6,8,1,3,7] => ? = 3 + 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,7,8,6] => ? = 1 + 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,1,2,3,4,8,6,7] => [2,3,4,5,1,7,8,6] => ? = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,1,6,3,4,8,5,7] => [2,1,4,5,7,3,8,6] => ? = 2 + 1
[1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [6,1,2,7,3,8,4,5] => [2,3,5,7,8,1,4,6] => ? = 3 + 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,6,7,8,5] => ? = 1 + 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,8,5,6,7] => [2,1,4,3,6,7,8,5] => ? = 1 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,7,2,3,8,4,5,6] => [1,3,4,6,7,8,2,5] => ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,2,8,4,5,6,7] => [2,3,1,5,6,7,8,4] => ? = 1 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [1,5,6,7,8,2,3,4] => ? = 3 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,2,8,3,4,5,6] => [1,3,5,6,7,8,2,4] => ? = 2 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,7,1,8,3,4,5,6] => [3,1,5,6,7,8,2,4] => ? = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,3,4,5,6,7] => [1,2,4,5,6,7,8,3] => ? = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => [2,1,4,5,6,7,8,3] => ? = 1 + 1
[1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [4,6,8,1,2,3,5,7] => [4,5,6,1,7,2,8,3] => ? = 3 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,2,3,4,5,6] => [1,4,5,6,7,8,2,3] => ? = 2 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,3,4,5,6,7,8,2] => ? = 1 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [6,8,1,2,3,4,5,7] => [3,4,5,6,7,1,8,2] => ? = 2 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,2,3,4,5,6,7,8] => [1,3,4,5,6,7,8,9,2] => ? = 1 + 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,2,3,4,5,6,7,8,9] => [1,3,4,5,6,7,8,9,10,2] => ? = 1 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,2,3,4,5,6,7] => [1,4,5,6,7,8,9,2,3] => ? = 2 + 1
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,8,1,2,3,4,5,6,9] => [3,4,5,6,7,8,1,2,9] => ? = 2 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,2,3,4,5,6,7,8,9,10] => [1,3,4,5,6,7,8,9,10,11,2] => ? = 1 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,9,10,2,3,4,5,6,7,8] => [1,4,5,6,7,8,9,10,2,3] => ? = 2 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,8,2,9,3,4,5,6,7] => [1,3,5,6,7,8,9,2,4] => ? = 2 + 1
Description
The length of the longest pattern of the form k 1 2...(k-1).
Matching statistic: St000141
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [2,4,1,3,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2,5] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [2,3,4,1,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,3,5,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,5,1,2,4] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,1,3,5,6,7] => [3,1,4,2,5,6,7] => ? = 2
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [2,3,4,6,1,5,7] => ? = 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [2,3,5,6,1,4,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [2,4,5,6,1,3,7] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [3,4,5,6,1,2,7] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => [1,3,4,5,7,2,6] => ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,6,7,5] => ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => [1,3,4,6,7,2,5] => ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,5,6,7,4] => ? = 1
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => [1,3,5,6,7,2,4] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [1,2,4,5,6,7,3] => ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => [2,1,4,5,6,7,3] => ? = 1
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,4,5,6,7,2,3] => ? = 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,3,4,5,6,7,2] => ? = 1
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [4,5,1,6,2,7,3,8] => [3,5,7,1,2,4,6,8] => ? = 4
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [2,5,6,1,7,3,4,8] => [4,1,6,7,2,3,5,8] => ? = 3
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,1,2,7,3,4,5,8] => [2,3,5,6,7,1,4,8] => ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => [4,5,6,7,1,2,3,8] => ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,7,2,3,4,5,8] => [2,4,5,6,7,1,3,8] => ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,1,2,3,4,5,8] => [3,4,5,6,7,1,2,8] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5,8,7] => [2,4,1,3,6,5,8,7] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [4,1,2,3,6,5,8,7] => [2,3,4,1,6,5,8,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,8,7] => [2,1,4,6,3,5,8,7] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0]
=> [4,1,2,6,3,5,8,7] => [2,3,5,1,6,4,8,7] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,6,3,4,5,8,7] => [2,1,4,5,6,3,8,7] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => [1,2,8,3,4,5,6,7] => ? = 5
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,7,8,3] => [2,5,8,1,3,4,6,7] => ? = 5
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,8,6] => [2,1,4,3,6,8,5,7] => ? = 2
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [3,1,4,2,7,5,8,6] => [2,4,1,3,6,8,5,7] => ? = 2
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [5,1,2,3,7,4,8,6] => [2,3,4,6,1,8,5,7] => ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [2,5,1,6,7,3,8,4] => [3,1,6,8,2,4,5,7] => ? = 4
[1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,8,5] => [4,1,6,2,8,3,5,7] => ? = 3
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [6,1,7,2,3,4,8,5] => [2,4,5,6,8,1,3,7] => ? = 3
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,7,8,6] => ? = 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,1,2,3,4,8,6,7] => [2,3,4,5,1,7,8,6] => ? = 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,1,6,3,4,8,5,7] => [2,1,4,5,7,3,8,6] => ? = 2
[1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [6,1,2,7,3,8,4,5] => [2,3,5,7,8,1,4,6] => ? = 3
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,6,7,8,5] => ? = 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,8,5,6,7] => [2,1,4,3,6,7,8,5] => ? = 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,7,2,3,8,4,5,6] => [1,3,4,6,7,8,2,5] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,2,8,4,5,6,7] => [2,3,1,5,6,7,8,4] => ? = 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [1,5,6,7,8,2,3,4] => ? = 3
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,2,8,3,4,5,6] => [1,3,5,6,7,8,2,4] => ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,7,1,8,3,4,5,6] => [3,1,5,6,7,8,2,4] => ? = 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,3,4,5,6,7] => [1,2,4,5,6,7,8,3] => ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => [2,1,4,5,6,7,8,3] => ? = 1
Description
The maximum drop size of a permutation.
The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000662
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 91%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 3
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => ? = 2
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [3,4,2,5,6,1,7] => ? = 2
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,2,6,1,7] => ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,2,1,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,7,6,5,4] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,3,5,7,6,4,8] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,2,5,7,6,4,8] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,5,4,7,6,3,2,8] => ? = 3
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,6,5,7,4,8,3,2] => ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,3,5,4,2,6,7,8] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,3,5,4,2,7,6,8] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,3,5,4,7,6,2,8] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,5,6,4,8,7,3,2] => ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,3,5,7,6,4,2,8] => ? = 3
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,6,3,7,8,2] => ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,8,4,3,2] => ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,4,5,6,7,3,8,2] => ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,8,3,2] => ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => ? = 1
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,3,6,7,8,5] => ? = 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,1,4,6,5,8,7,3] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,1,4,6,5,7,8,3] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,6,3,8,7] => ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,1,4,6,8,7,5,3] => ? = 3
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,8,3] => ? = 1
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [5,4,3,8,7,6,2,1] => ? = 4
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [6,5,4,7,3,2,8,1] => ? = 5
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,5,4,6,7,8,1] => ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0]
=> [5,4,6,3,2,8,7,1] => ? = 4
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [4,3,5,6,7,2,8,1] => ? = 3
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => ? = 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,8,4] => ? = 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [2,4,3,6,5,1,8,7] => ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,8,7,1] => ? = 2
[1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [2,4,3,5,6,1,8,7] => ? = 2
[1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [2,4,3,6,8,7,5,1] => ? = 3
[1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [4,5,3,6,2,7,8,1] => ? = 3
[1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [4,5,3,7,8,6,2,1] => ? = 3
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7,8] => ? = 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,8,7] => ? = 1
[1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [2,4,6,5,3,1,8,7] => ? = 3
[1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [2,4,6,5,3,8,7,1] => ? = 3
[1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [2,4,6,5,8,7,3,1] => ? = 3
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> [3,4,5,2,6,7,1,8] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,5,1,7,8,6] => ? = 1
[1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [2,4,6,8,7,5,3,1] => ? = 4
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,7,3,2,1,8] => ? = 3
Description
The staircase size of the code of a permutation.
The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$.
The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$.
This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000442
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 76%●distinct values known / distinct values provided: 64%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 76%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0]
=> ? = 4
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 3
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 3
[1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 4
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000651
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [2,1,3] => 2
[1,1,1,0,0,0]
=> [3,1,2] => [3,2,1] => [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [3,2,1,4] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,3,1,2] => [2,1,3,4] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => [3,1,2,4] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,1,4,2] => [2,4,1,3] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,3,2,1] => [1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => [3,4,5,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [4,5,2,3,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [5,3,2,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [4,3,2,5,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,4,2,3] => [3,2,4,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => [5,2,3,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,2,4] => [4,2,3,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,5,3] => [3,5,2,4,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [5,3,4,1,2] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [4,3,5,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [4,5,2,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [5,3,2,1,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [4,3,2,1,5] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => [3,2,1,4,5] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,3,1,2,5] => [5,2,1,3,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => [4,2,1,3,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,1,2,5,3] => [3,5,2,1,4] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => [2,1,3,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => [1,2,3,7,5,4,6] => [6,4,5,7,3,2,1] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [7,6,5,4,2,3,1] => ? = 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [1,6,3,7,5,2,4] => [4,2,5,7,3,6,1] => ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => [1,4,2,7,6,5,3] => [3,5,6,7,2,4,1] => ? = 2
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [1,5,2,6,3,7,4] => [4,7,3,6,2,5,1] => ? = 3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => [1,7,6,4,2,5,3] => [3,5,2,4,6,7,1] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,6,4,2,7,5,3] => [3,5,7,2,4,6,1] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => [3,1,2,4,5,6,7] => [7,6,5,4,2,1,3] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => [4,1,2,3,5,6,7] => [7,6,5,3,2,1,4] => ? = 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => [4,1,2,3,5,7,6] => [6,7,5,3,2,1,4] => ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,1,2,3,4,6,7] => [7,6,4,3,2,1,5] => ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6] => [5,1,2,3,4,7,6] => [6,7,4,3,2,1,5] => ? = 4
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 5
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,1,7,5] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 4
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [5,2,6,4,1,3,7] => [7,3,1,4,6,2,5] => ? = 3
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [3,1,6,5,4,2,7] => [7,2,4,5,6,1,3] => ? = 2
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [4,1,5,2,6,3,7] => [7,3,6,2,5,1,4] => ? = 3
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [6,5,3,1,4,2,7] => [7,2,4,1,3,5,6] => ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,3,1,6,4,2,7] => [7,2,4,6,1,3,5] => ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,8,7] => [7,8,6,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,7,6,8] => [8,6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [1,2,3,5,4,6,7,8] => [8,7,6,4,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,3,6,4,7,5,8] => [1,2,3,7,5,4,6,8] => [8,6,4,5,7,3,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,3,4,5] => [1,2,6,3,7,4,8,5] => [5,8,4,7,3,6,2,1] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,3,2,4,5,6,7,8] => [8,7,6,5,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [1,3,2,5,4,7,6,8] => [8,6,7,4,5,2,3,1] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,2,6,4,7,5,8] => [1,3,2,7,5,4,6,8] => [8,6,4,5,7,2,3,1] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,3,5,6,2,7,4,8] => [1,5,2,3,7,4,6,8] => [8,6,4,7,3,2,5,1] => ? = 3
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,5,7,8,2,4,6] => [1,7,4,8,6,2,3,5] => [5,3,2,6,8,4,7,1] => ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,4,2,5,3,6,7,8] => [1,5,3,2,4,6,7,8] => [8,7,6,4,2,3,5,1] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,4,2,5,3,7,6,8] => [1,5,3,2,4,7,6,8] => [8,6,7,4,2,3,5,1] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,4,2,6,3,7,5,8] => [1,7,5,3,2,4,6,8] => [8,6,4,2,3,5,7,1] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,6,7,2,3,8,5] => [1,6,3,8,5,2,4,7] => [7,4,2,5,8,3,6,1] => ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,5,2,6,3,7,4,8] => [1,5,3,2,7,4,6,8] => [8,6,4,7,2,3,5,1] => ? = 3
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,2,3,4,6,7] => [1,8,7,6,4,2,5,3] => [3,5,2,4,6,7,8,1] => ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [1,8,5,2,6,3,7,4] => [4,7,3,6,2,5,8,1] => ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => [1,6,4,2,8,7,5,3] => [3,5,7,8,2,4,6,1] => ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,2,3,4,5,6] => [1,8,6,4,2,7,5,3] => [3,5,7,2,4,6,8,1] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,3,6,8,5,7] => [2,1,4,3,8,7,5,6] => [6,5,7,8,3,4,1,2] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,8,6] => [2,1,4,3,8,6,5,7] => [7,5,6,8,3,4,1,2] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,1,4,6,3,5,8,7] => [2,1,6,5,3,4,8,7] => [7,8,4,3,5,6,1,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,8,7] => [2,1,6,4,3,5,8,7] => [7,8,5,3,4,6,1,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,1,5,3,7,4,8,6] => [2,1,8,6,4,3,5,7] => [7,5,3,4,6,8,1,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,1,5,3,8,4,6,7] => [2,1,8,7,6,4,3,5] => [5,3,4,6,7,8,1,2] => ? = 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,1,6,3,7,4,8,5] => [2,1,6,4,3,8,5,7] => [7,5,8,3,4,6,1,2] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,6,1,7,8] => [6,1,2,3,4,5,7,8] => [8,7,5,4,3,2,1,6] => ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,6,1,8,7] => [6,1,2,3,4,5,8,7] => [7,8,5,4,3,2,1,6] => ? = 5
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,3,5,6,1,7,8,4] => [5,1,2,3,8,4,6,7] => [7,6,4,8,3,2,1,5] => ? = 4
Description
The maximal size of a rise in a permutation.
This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
Matching statistic: St000306
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 82%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 82%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 4
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> ? = 4
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 3
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 4
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 2
Description
The bounce count of a Dyck path.
For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St001039
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001039: Dyck paths ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 73%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001039: Dyck paths ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> ? = 3 + 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> ? = 3 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 3 + 1
[1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0,1,0]
=> ? = 3 + 1
[1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 3 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 4 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
Description
The maximal height of a column in the parallelogram polyomino associated with a Dyck path.
Matching statistic: St000845
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 64% ●values known / values provided: 67%●distinct values known / distinct values provided: 64%
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 64% ●values known / values provided: 67%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [5,3,2,7,6,4,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,1,7,5] => [5,7,1,6,4,3,2] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6)],7)
=> ? = 4
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [7,4,2,1,6,5,3] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [7,3,2,1,6,5,4] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [7,8,6,5,4,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [8,6,7,5,4,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [8,7,6,4,5,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [4,8,7,6,5,3,2,1] => ([(3,4),(3,5),(3,6),(3,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,3,6,4,7,5,8] => [8,5,7,4,6,3,2,1] => ([(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,3,4,5] => [5,4,3,8,7,6,2,1] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [8,7,6,5,4,2,3,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [8,6,7,4,5,2,3,1] => ([(2,7),(3,6),(4,5)],8)
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,2,6,4,7,5,8] => [8,5,7,4,6,2,3,1] => ([(2,7),(3,6),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,5,7,8,2,4,6] => [6,4,2,8,7,5,3,1] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8)
=> ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,4,2,5,3,6,7,8] => [8,7,6,3,5,2,4,1] => ([(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,4,2,5,3,7,6,8] => [8,6,7,3,5,2,4,1] => ([(2,7),(3,6),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,4,2,6,3,7,5,8] => [8,5,7,3,6,2,4,1] => ([(2,6),(3,6),(3,7),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,6,7,2,3,8,5] => [5,8,3,2,7,6,4,1] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7)],8)
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,5,2,6,3,7,4,8] => [8,4,7,3,6,2,5,1] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,2,3,4,6,7] => [7,6,4,3,2,8,5,1] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [5,4,3,2,8,7,6,1] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => [7,5,4,3,2,8,6,1] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,2,3,4,5,6] => [6,5,4,3,2,8,7,1] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [7,6,5,4,3,2,8,1] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [8,7,6,5,4,3,1,2] => ([(6,7)],8)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,3,6,8,5,7] => [7,5,8,6,3,4,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,8,6] => [6,8,5,7,3,4,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,8,5,6,7] => [7,6,5,8,3,4,1,2] => ([(0,7),(1,7),(2,7),(3,6),(4,5)],8)
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,1,4,6,3,5,8,7] => [7,8,5,3,6,4,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,8,7] => [7,8,4,6,3,5,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,1,5,3,7,4,8,6] => [6,8,4,7,3,5,1,2] => ([(0,6),(1,6),(1,7),(2,5),(3,4),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,1,5,3,8,4,6,7] => [7,6,4,8,3,5,1,2] => ?
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,6,3,4,5,8,7] => [7,8,5,4,3,6,1,2] => ([(0,7),(1,7),(2,7),(3,6),(4,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,1,6,3,7,4,8,5] => [5,8,4,7,3,6,1,2] => ([(0,7),(1,6),(1,7),(2,5),(3,4),(3,6),(3,7)],8)
=> ? = 3
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => [7,6,5,4,3,8,1,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6)],8)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8] => [8,7,6,1,5,4,3,2] => ([(3,4),(3,5),(3,6),(3,7)],8)
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,6,1,7,8] => [8,7,1,6,5,4,3,2] => ([(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,6,1,8,7] => [7,8,1,6,5,4,3,2] => ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6)],8)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [8,1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [1,8,7,6,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ? = 7
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,3,5,6,8,1,4,7] => [7,4,1,8,6,5,3,2] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,5,8,7] => [7,8,5,6,3,1,4,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [2,4,1,8,3,5,6,7] => [7,6,5,3,8,1,4,2] => ?
=> ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [2,4,5,7,1,3,8,6] => [6,8,3,1,7,5,4,2] => ([(0,5),(0,6),(0,7),(1,3),(1,7),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 4
[1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,8,5] => [5,8,3,7,1,6,4,2] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,5),(2,7)],8)
=> ? = 3
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,6,8,1,3,4,5,7] => [7,5,4,3,1,8,6,2] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6,7,8] => [8,7,6,5,4,2,1,3] => ([(5,7),(6,7)],8)
=> ? = 1
[1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,2,8,4,5,6,7] => [7,6,5,4,8,2,1,3] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6)],8)
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5,8,7] => [7,8,5,6,2,4,1,3] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000846
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 64% ●values known / values provided: 66%●distinct values known / distinct values provided: 64%
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 64% ●values known / values provided: 66%●distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [7,4,2,1,6,5,3] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => [7,4,1,6,5,3,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [7,3,2,1,6,5,4] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => [7,3,1,6,5,4,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [7,2,1,6,5,4,3] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [5,3,2,7,6,4,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [5,2,7,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,2,7,6,5,3,1] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [3,2,7,6,5,4,1] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [8,7,6,5,4,3,1,2] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [8,7,6,5,4,2,3,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [8,7,6,4,5,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [8,7,6,4,3,2,1,5] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,3,6,4,7,5,8] => [8,7,6,3,5,2,4,1] => ([(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,3,4,5] => [8,7,3,2,1,6,5,4] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [8,6,7,5,4,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [8,6,7,4,5,2,3,1] => ([(2,7),(3,6),(4,5)],8)
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,2,6,4,7,5,8] => [8,6,7,3,5,2,4,1] => ([(2,7),(3,6),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,5,7,8,2,4,6] => [8,6,4,2,1,7,5,3] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,4,2,5,3,6,7,8] => [8,5,7,4,6,3,2,1] => ([(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,4,2,5,3,7,6,8] => [8,5,7,4,6,2,3,1] => ([(2,7),(3,6),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,4,2,6,3,7,5,8] => [8,5,7,3,6,2,4,1] => ([(2,6),(3,6),(3,7),(4,5),(4,7)],8)
=> ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,6,7,2,3,8,5] => [8,5,3,2,7,6,1,4] => ([(1,7),(2,5),(2,6),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,5,2,6,3,7,4,8] => [8,4,7,3,6,2,5,1] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,2,3,4,6,7] => [8,4,1,7,6,5,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [8,3,2,1,7,6,5,4] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8)
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => [8,3,1,7,6,5,4,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,2,3,4,5,6] => [8,2,1,7,6,5,4,3] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [8,1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => [7,8,6,5,4,3,2,1] => ([(6,7)],8)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,3,6,8,5,7] => [7,8,5,6,3,1,4,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,8,6] => [7,8,5,6,2,4,1,3] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,8,5,6,7] => [7,8,5,6,1,4,3,2] => ([(0,7),(1,6),(2,3),(2,4),(2,5)],8)
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,1,4,6,3,5,8,7] => [7,8,5,3,6,4,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,8,7] => [7,8,4,6,3,5,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,1,5,3,7,4,8,6] => [7,8,4,6,2,5,1,3] => ([(0,6),(1,6),(1,7),(2,5),(3,4),(3,7)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,1,5,3,8,4,6,7] => [7,8,4,6,1,5,3,2] => ?
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,6,3,4,5,8,7] => [7,8,3,6,5,4,1,2] => ([(0,7),(1,6),(2,3),(2,4),(2,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [2,1,6,3,7,4,8,5] => [7,8,3,6,2,5,1,4] => ([(0,7),(1,6),(1,7),(2,5),(3,4),(3,6),(3,7)],8)
=> ? = 3
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => [7,8,1,6,5,4,3,2] => ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6)],8)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8] => [7,6,5,4,8,3,2,1] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,6,1,7,8] => [7,6,5,4,3,8,2,1] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,6,1,8,7] => [7,6,5,4,3,8,1,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6)],8)
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [7,6,5,4,3,2,8,1] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [7,6,5,4,3,2,1,8] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7
[1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,3,5,6,8,1,4,7] => [7,6,4,3,1,8,5,2] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,5,8,7] => [7,5,8,6,3,4,1,2] => ([(0,7),(1,5),(2,4),(3,6),(3,7)],8)
=> ? = 2
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [2,4,1,8,3,5,6,7] => [7,5,8,1,6,4,3,2] => ([(0,6),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7)],8)
=> ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [2,4,5,7,1,3,8,6] => [7,5,4,2,8,6,1,3] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(4,5),(4,6),(4,7)],8)
=> ? = 4
Description
The maximal number of elements covering an element of a poset.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000730The maximal arc length of a set partition. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000527The width of the poset. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000094The depth of an ordered tree. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001589The nesting number of a perfect matching. St000455The second largest eigenvalue of a graph if it is integral. St001864The number of excedances of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001905The number of preferred parking spots in a parking function less than the index of the car.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!