searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000029
(load all 58 compositions to match this statistic)
(load all 58 compositions to match this statistic)
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 3
[2,4,3,1] => 3
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 4
[3,4,2,1] => 4
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 4
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 3
[1,3,5,4,2] => 3
[1,4,2,3,5] => 2
[1,4,2,5,3] => 3
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 4
Description
The depth of a permutation.
This is given by
$$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$.
Permutations with depth at most $1$ are called ''almost-increasing'' in [5].
Matching statistic: St000030
(load all 33 compositions to match this statistic)
(load all 33 compositions to match this statistic)
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [2,3,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,3,4,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,3,2,1] => 3
[2,4,1,3] => [4,2,1,3] => 3
[2,4,3,1] => [3,4,2,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [4,3,1,2] => 3
[3,2,1,4] => [2,3,1,4] => 2
[3,2,4,1] => [2,4,3,1] => 3
[3,4,1,2] => [4,1,3,2] => 4
[3,4,2,1] => [4,2,3,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [3,4,1,2] => 3
[4,2,1,3] => [2,4,1,3] => 3
[4,2,3,1] => [2,3,4,1] => 3
[4,3,1,2] => [3,1,4,2] => 4
[4,3,2,1] => [3,2,4,1] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => 2
[1,2,5,3,4] => [1,2,5,3,4] => 2
[1,2,5,4,3] => [1,2,4,5,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,4,3,2,5] => 2
[1,3,4,5,2] => [1,5,4,3,2] => 3
[1,3,5,2,4] => [1,5,3,2,4] => 3
[1,3,5,4,2] => [1,4,5,3,2] => 3
[1,4,2,3,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => [1,5,4,2,3] => 3
[1,4,3,2,5] => [1,3,4,2,5] => 2
[1,4,3,5,2] => [1,3,5,4,2] => 3
[1,4,5,2,3] => [1,5,2,4,3] => 4
Description
The sum of the descent differences of a permutations.
This statistic is given by
$$\pi \mapsto \sum_{i\in\operatorname{Des}(\pi)} (\pi_i-\pi_{i+1}).$$
See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Matching statistic: St000224
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00080: Set partitions —to permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 4
Description
The sorting index of a permutation.
The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols.
Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Matching statistic: St000728
(load all 44 compositions to match this statistic)
(load all 44 compositions to match this statistic)
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000728: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000728: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> ? = 0
[1,2] => {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => {{1,2,3}}
=> 2
[3,1,2] => {{1,3},{2}}
=> 2
[3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => {{1,2},{3,4}}
=> 2
[2,3,1,4] => {{1,2,3},{4}}
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> 3
[2,4,1,3] => {{1,2,4},{3}}
=> 3
[2,4,3,1] => {{1,2,4},{3}}
=> 3
[3,1,2,4] => {{1,3},{2},{4}}
=> 2
[3,1,4,2] => {{1,3,4},{2}}
=> 3
[3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 4
[3,4,2,1] => {{1,3},{2,4}}
=> 4
[4,1,2,3] => {{1,4},{2},{3}}
=> 3
[4,1,3,2] => {{1,4},{2},{3}}
=> 3
[4,2,1,3] => {{1,4},{2},{3}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,3,1,2] => {{1,4},{2,3}}
=> 4
[4,3,2,1] => {{1,4},{2,3}}
=> 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 4
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> 4
Description
The dimension of a set partition.
This is the sum of the lengths of the arcs of a set partition. Equivalently, one obtains that this is the sum of the maximal entries of the blocks minus the sum of the minimal entries of the blocks.
A slightly shifted definition of the dimension is [[St000572]].
Matching statistic: St001894
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001894: Signed permutations ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 50%
St001894: Signed permutations ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [2,3,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [3,2,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => [2,4,1,3] => 3
[2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [3,1,4,2] => 3
[3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => [3,4,2,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [4,1,3,2] => 3
[4,2,1,3] => [4,2,1,3] => 3
[4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => [4,3,1,2] => 4
[4,3,2,1] => [4,3,2,1] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,4,5,3] => 2
[1,2,5,3,4] => [1,2,5,3,4] => 2
[1,2,5,4,3] => [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,3,4,2,5] => 2
[1,3,4,5,2] => [1,3,4,5,2] => 3
[1,3,5,2,4] => [1,3,5,2,4] => 3
[1,3,5,4,2] => [1,3,5,4,2] => 3
[1,4,2,3,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => [1,4,2,5,3] => 3
[1,4,3,2,5] => [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,4,3,5,2] => 3
[1,4,5,2,3] => [1,4,5,2,3] => 4
[2,1,3,4,5] => [2,1,3,4,5] => ? = 1
[2,1,3,5,4] => [2,1,3,5,4] => ? = 2
[2,1,4,3,5] => [2,1,4,3,5] => ? = 2
[2,1,4,5,3] => [2,1,4,5,3] => ? = 3
[2,1,5,3,4] => [2,1,5,3,4] => ? = 3
[2,1,5,4,3] => [2,1,5,4,3] => ? = 3
[2,3,1,4,5] => [2,3,1,4,5] => ? = 2
[2,3,1,5,4] => [2,3,1,5,4] => ? = 3
[2,3,4,1,5] => [2,3,4,1,5] => ? = 3
[2,3,4,5,1] => [2,3,4,5,1] => ? = 4
[2,3,5,1,4] => [2,3,5,1,4] => ? = 4
[2,3,5,4,1] => [2,3,5,4,1] => ? = 4
[2,4,1,3,5] => [2,4,1,3,5] => ? = 3
[2,4,1,5,3] => [2,4,1,5,3] => ? = 4
[2,4,3,1,5] => [2,4,3,1,5] => ? = 3
[2,4,3,5,1] => [2,4,3,5,1] => ? = 4
[2,4,5,1,3] => [2,4,5,1,3] => ? = 5
[2,4,5,3,1] => [2,4,5,3,1] => ? = 5
[2,5,1,3,4] => [2,5,1,3,4] => ? = 4
[2,5,1,4,3] => [2,5,1,4,3] => ? = 4
[2,5,3,1,4] => [2,5,3,1,4] => ? = 4
[2,5,3,4,1] => [2,5,3,4,1] => ? = 4
[2,5,4,1,3] => [2,5,4,1,3] => ? = 5
[2,5,4,3,1] => [2,5,4,3,1] => ? = 5
[3,1,2,4,5] => [3,1,2,4,5] => ? = 2
[3,1,2,5,4] => [3,1,2,5,4] => ? = 3
[3,1,4,2,5] => [3,1,4,2,5] => ? = 3
[3,1,4,5,2] => [3,1,4,5,2] => ? = 4
[3,1,5,2,4] => [3,1,5,2,4] => ? = 4
[3,1,5,4,2] => [3,1,5,4,2] => ? = 4
[3,2,1,4,5] => [3,2,1,4,5] => ? = 2
[3,2,1,5,4] => [3,2,1,5,4] => ? = 3
[3,2,4,1,5] => [3,2,4,1,5] => ? = 3
[3,2,4,5,1] => [3,2,4,5,1] => ? = 4
[3,2,5,1,4] => [3,2,5,1,4] => ? = 4
[3,2,5,4,1] => [3,2,5,4,1] => ? = 4
[3,4,1,2,5] => [3,4,1,2,5] => ? = 4
[3,4,1,5,2] => [3,4,1,5,2] => ? = 5
[3,4,2,1,5] => [3,4,2,1,5] => ? = 4
[3,4,2,5,1] => [3,4,2,5,1] => ? = 5
[3,4,5,1,2] => [3,4,5,1,2] => ? = 6
[3,4,5,2,1] => [3,4,5,2,1] => ? = 6
[3,5,1,2,4] => [3,5,1,2,4] => ? = 5
[3,5,1,4,2] => [3,5,1,4,2] => ? = 5
[3,5,2,1,4] => [3,5,2,1,4] => ? = 5
[3,5,2,4,1] => [3,5,2,4,1] => ? = 5
[3,5,4,1,2] => [3,5,4,1,2] => ? = 6
[3,5,4,2,1] => [3,5,4,2,1] => ? = 6
[4,1,2,3,5] => [4,1,2,3,5] => ? = 3
[4,1,2,5,3] => [4,1,2,5,3] => ? = 4
Description
The depth of a signed permutation.
The depth of a positive root is its rank in the root poset. The depth of an element of a Coxeter group is the minimal sum of depths for any representation as product of reflections.
Matching statistic: St001630
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([],2)
=> ([],1)
=> ? = 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1
[1,2,3] => ([],3)
=> ([],1)
=> ? = 0
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4
[1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 4
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([],2)
=> ([],1)
=> ? = 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1
[1,2,3] => ([],3)
=> ([],1)
=> ? = 0
[1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1
[2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0
[1,2,4,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[1,3,2,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4
[1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 4
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,1,3,4,5] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001821
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1] => {{1}}
=> [1] => [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,4,5,3] => ? = 2
[1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => ? = 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => ? = 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => ? = 2
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,3,4,2,5] => ? = 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,3,4,5,2] => ? = 3
[1,3,5,2,4] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
[1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => ? = 2
[1,4,2,5,3] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,4,3,5,2] => ? = 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => ? = 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,4,3,5,2] => ? = 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => ? = 4
[1,4,5,3,2] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => ? = 4
[1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,2,4,3] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => ? = 3
[1,5,4,2,3] => {{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ? = 4
[1,5,4,3,2] => {{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ? = 4
[2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 1
[2,1,3,5,4] => {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => ? = 2
[2,1,4,3,5] => {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => ? = 2
[2,1,4,5,3] => {{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,4,5,3] => ? = 3
[2,1,5,3,4] => {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 3
[2,1,5,4,3] => {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ? = 3
[2,3,1,4,5] => {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,3,1,4,5] => ? = 2
[2,3,1,5,4] => {{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,3,1,5,4] => ? = 3
[2,3,4,1,5] => {{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,3,4,1,5] => ? = 3
[2,3,4,5,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,3,4,5,1] => ? = 4
[2,3,5,1,4] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,3,5,4,1] => ? = 4
[2,3,5,4,1] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,3,5,4,1] => ? = 4
[2,4,1,3,5] => {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,4,3,1,5] => ? = 3
[2,4,1,5,3] => {{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,4,3,5,1] => ? = 4
[2,4,3,1,5] => {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,4,3,1,5] => ? = 3
[2,4,3,5,1] => {{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,4,3,5,1] => ? = 4
[2,4,5,1,3] => {{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,4,5,1,3] => ? = 5
[2,4,5,3,1] => {{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,4,5,1,3] => ? = 5
[2,5,1,3,4] => {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => ? = 4
[2,5,1,4,3] => {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => ? = 4
[2,5,3,1,4] => {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => ? = 4
[2,5,3,4,1] => {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => ? = 4
[2,5,4,1,3] => {{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => ? = 5
[2,5,4,3,1] => {{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => ? = 5
[3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => ? = 2
[3,1,2,5,4] => {{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => ? = 3
Description
The sorting index of a signed permutation.
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$
[2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5]
$$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$
\operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0),
$$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$
\operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13.
$$
Matching statistic: St001596
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 30%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 30%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 0
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[5,5],[3]]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[5,4],[2]]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> ? = 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[5,3],[1]]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> ? = 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> ? = 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> ? = 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 4
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 4
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 3
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 4
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 4
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ? = 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> ? = 2
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> ? = 3
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> ? = 3
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> ? = 3
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> ? = 2
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> ? = 3
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> ? = 3
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,2],[]]
=> ? = 4
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[3,3,2,2],[]]
=> ? = 4
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[3,3,2,2],[]]
=> ? = 4
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> ? = 3
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[3,3,3,2],[1]]
=> ? = 4
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> ? = 3
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[3,3,3,2],[1]]
=> ? = 4
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[4,4,2],[]]
=> ? = 5
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[4,4,2],[]]
=> ? = 5
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[7],[]]
=> 0
Description
The number of two-by-two squares inside a skew partition.
This is, the number of cells $(i,j)$ in a skew partition for which the box $(i+1,j+1)$ is also a cell inside the skew partition.
Matching statistic: St001633
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 2
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 3
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 4
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 4
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 2
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 2
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 3
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 3
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 3
[2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 3
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3
[2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4
[2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4
[2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? = 4
[2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? = 4
[2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 3
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
The following 1 statistic also match your data. Click on any of them to see the details.
St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!