Your data matches 66 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000035: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [1,2] => 0
[2,1] => [2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => 1
[2,3,1] => [1,3,2] => [1,3,2] => 1
[3,1,2] => [3,1,2] => [2,3,1] => 1
[3,2,1] => [3,2,1] => [3,2,1] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,2,4,3] => [1,2,4,3] => 1
[1,4,2,3] => [1,4,2,3] => [1,3,4,2] => 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [1,3,2,4] => [1,3,2,4] => 1
[2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 1
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => 1
[2,4,3,1] => [1,4,3,2] => [1,4,3,2] => 1
[3,1,2,4] => [3,1,2,4] => [2,3,1,4] => 1
[3,1,4,2] => [2,1,4,3] => [2,1,4,3] => 2
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 2
[3,4,1,2] => [2,4,1,3] => [3,4,1,2] => 1
[3,4,2,1] => [1,4,3,2] => [1,4,3,2] => 1
[4,1,2,3] => [4,1,2,3] => [2,3,4,1] => 1
[4,1,3,2] => [4,1,3,2] => [3,2,4,1] => 2
[4,2,1,3] => [4,2,1,3] => [3,4,2,1] => 1
[4,2,3,1] => [4,1,3,2] => [3,2,4,1] => 2
[4,3,1,2] => [4,3,1,2] => [2,4,3,1] => 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,2,4,5,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,3,5,2,4] => [1,3,5,2,4] => [1,4,5,2,3] => 1
[1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,3,4,2,5] => 1
[1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1
[1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,4,5,2,3] => [1,3,5,2,4] => [1,4,5,2,3] => 1
Description
The number of left outer peaks of a permutation. A left outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$. In other words, it is a peak in the word $[0,w_1,..., w_n]$. This appears in [1, def.3.1]. The joint distribution with [[St000366]] is studied in [3], where left outer peaks are called ''exterior peaks''.
Mp00069: Permutations complementPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000291: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 1 => 0
[1,2] => [2,1] => [1,1] => 11 => 0
[2,1] => [1,2] => [2] => 10 => 1
[1,2,3] => [3,2,1] => [1,1,1] => 111 => 0
[1,3,2] => [3,1,2] => [1,2] => 110 => 1
[2,1,3] => [2,3,1] => [2,1] => 101 => 1
[2,3,1] => [2,1,3] => [1,2] => 110 => 1
[3,1,2] => [1,3,2] => [2,1] => 101 => 1
[3,2,1] => [1,2,3] => [3] => 100 => 1
[1,2,3,4] => [4,3,2,1] => [1,1,1,1] => 1111 => 0
[1,2,4,3] => [4,3,1,2] => [1,1,2] => 1110 => 1
[1,3,2,4] => [4,2,3,1] => [1,2,1] => 1101 => 1
[1,3,4,2] => [4,2,1,3] => [1,1,2] => 1110 => 1
[1,4,2,3] => [4,1,3,2] => [1,2,1] => 1101 => 1
[1,4,3,2] => [4,1,2,3] => [1,3] => 1100 => 1
[2,1,3,4] => [3,4,2,1] => [2,1,1] => 1011 => 1
[2,1,4,3] => [3,4,1,2] => [2,2] => 1010 => 2
[2,3,1,4] => [3,2,4,1] => [1,2,1] => 1101 => 1
[2,3,4,1] => [3,2,1,4] => [1,1,2] => 1110 => 1
[2,4,1,3] => [3,1,4,2] => [1,2,1] => 1101 => 1
[2,4,3,1] => [3,1,2,4] => [1,3] => 1100 => 1
[3,1,2,4] => [2,4,3,1] => [2,1,1] => 1011 => 1
[3,1,4,2] => [2,4,1,3] => [2,2] => 1010 => 2
[3,2,1,4] => [2,3,4,1] => [3,1] => 1001 => 1
[3,2,4,1] => [2,3,1,4] => [2,2] => 1010 => 2
[3,4,1,2] => [2,1,4,3] => [1,2,1] => 1101 => 1
[3,4,2,1] => [2,1,3,4] => [1,3] => 1100 => 1
[4,1,2,3] => [1,4,3,2] => [2,1,1] => 1011 => 1
[4,1,3,2] => [1,4,2,3] => [2,2] => 1010 => 2
[4,2,1,3] => [1,3,4,2] => [3,1] => 1001 => 1
[4,2,3,1] => [1,3,2,4] => [2,2] => 1010 => 2
[4,3,1,2] => [1,2,4,3] => [3,1] => 1001 => 1
[4,3,2,1] => [1,2,3,4] => [4] => 1000 => 1
[1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1] => 11111 => 0
[1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,2] => 11110 => 1
[1,2,4,3,5] => [5,4,2,3,1] => [1,1,2,1] => 11101 => 1
[1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,2] => 11110 => 1
[1,2,5,3,4] => [5,4,1,3,2] => [1,1,2,1] => 11101 => 1
[1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => 11100 => 1
[1,3,2,4,5] => [5,3,4,2,1] => [1,2,1,1] => 11011 => 1
[1,3,2,5,4] => [5,3,4,1,2] => [1,2,2] => 11010 => 2
[1,3,4,2,5] => [5,3,2,4,1] => [1,1,2,1] => 11101 => 1
[1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,2] => 11110 => 1
[1,3,5,2,4] => [5,3,1,4,2] => [1,1,2,1] => 11101 => 1
[1,3,5,4,2] => [5,3,1,2,4] => [1,1,3] => 11100 => 1
[1,4,2,3,5] => [5,2,4,3,1] => [1,2,1,1] => 11011 => 1
[1,4,2,5,3] => [5,2,4,1,3] => [1,2,2] => 11010 => 2
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,1] => 11001 => 1
[1,4,3,5,2] => [5,2,3,1,4] => [1,2,2] => 11010 => 2
[1,4,5,2,3] => [5,2,1,4,3] => [1,1,2,1] => 11101 => 1
Description
The number of descents of a binary word.
Mp00064: Permutations reversePermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1]
=> 0
[1,2] => [2,1] => [1,1] => [1,1]
=> 0
[2,1] => [1,2] => [2] => [2]
=> 1
[1,2,3] => [3,2,1] => [1,1,1] => [1,1,1]
=> 0
[1,3,2] => [2,3,1] => [2,1] => [2,1]
=> 1
[2,1,3] => [3,1,2] => [1,2] => [2,1]
=> 1
[2,3,1] => [1,3,2] => [2,1] => [2,1]
=> 1
[3,1,2] => [2,1,3] => [1,2] => [2,1]
=> 1
[3,2,1] => [1,2,3] => [3] => [3]
=> 1
[1,2,3,4] => [4,3,2,1] => [1,1,1,1] => [1,1,1,1]
=> 0
[1,2,4,3] => [3,4,2,1] => [2,1,1] => [2,1,1]
=> 1
[1,3,2,4] => [4,2,3,1] => [1,2,1] => [2,1,1]
=> 1
[1,3,4,2] => [2,4,3,1] => [2,1,1] => [2,1,1]
=> 1
[1,4,2,3] => [3,2,4,1] => [1,2,1] => [2,1,1]
=> 1
[1,4,3,2] => [2,3,4,1] => [3,1] => [3,1]
=> 1
[2,1,3,4] => [4,3,1,2] => [1,1,2] => [2,1,1]
=> 1
[2,1,4,3] => [3,4,1,2] => [2,2] => [2,2]
=> 2
[2,3,1,4] => [4,1,3,2] => [1,2,1] => [2,1,1]
=> 1
[2,3,4,1] => [1,4,3,2] => [2,1,1] => [2,1,1]
=> 1
[2,4,1,3] => [3,1,4,2] => [1,2,1] => [2,1,1]
=> 1
[2,4,3,1] => [1,3,4,2] => [3,1] => [3,1]
=> 1
[3,1,2,4] => [4,2,1,3] => [1,1,2] => [2,1,1]
=> 1
[3,1,4,2] => [2,4,1,3] => [2,2] => [2,2]
=> 2
[3,2,1,4] => [4,1,2,3] => [1,3] => [3,1]
=> 1
[3,2,4,1] => [1,4,2,3] => [2,2] => [2,2]
=> 2
[3,4,1,2] => [2,1,4,3] => [1,2,1] => [2,1,1]
=> 1
[3,4,2,1] => [1,2,4,3] => [3,1] => [3,1]
=> 1
[4,1,2,3] => [3,2,1,4] => [1,1,2] => [2,1,1]
=> 1
[4,1,3,2] => [2,3,1,4] => [2,2] => [2,2]
=> 2
[4,2,1,3] => [3,1,2,4] => [1,3] => [3,1]
=> 1
[4,2,3,1] => [1,3,2,4] => [2,2] => [2,2]
=> 2
[4,3,1,2] => [2,1,3,4] => [1,3] => [3,1]
=> 1
[4,3,2,1] => [1,2,3,4] => [4] => [4]
=> 1
[1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1] => [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [4,5,3,2,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,2,4,3,5] => [5,3,4,2,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,2,4,5,3] => [3,5,4,2,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,2,5,3,4] => [4,3,5,2,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,2,5,4,3] => [3,4,5,2,1] => [3,1,1] => [3,1,1]
=> 1
[1,3,2,4,5] => [5,4,2,3,1] => [1,1,2,1] => [2,1,1,1]
=> 1
[1,3,2,5,4] => [4,5,2,3,1] => [2,2,1] => [2,2,1]
=> 2
[1,3,4,2,5] => [5,2,4,3,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,3,4,5,2] => [2,5,4,3,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,3,5,2,4] => [4,2,5,3,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,3,5,4,2] => [2,4,5,3,1] => [3,1,1] => [3,1,1]
=> 1
[1,4,2,3,5] => [5,3,2,4,1] => [1,1,2,1] => [2,1,1,1]
=> 1
[1,4,2,5,3] => [3,5,2,4,1] => [2,2,1] => [2,2,1]
=> 2
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,1] => [3,1,1]
=> 1
[1,4,3,5,2] => [2,5,3,4,1] => [2,2,1] => [2,2,1]
=> 2
[1,4,5,2,3] => [3,2,5,4,1] => [1,2,1,1] => [2,1,1,1]
=> 1
Description
The number of parts of an integer partition that are at least two.
Mp00109: Permutations descent wordBinary words
St000390: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => => ? = 0
[1,2] => 0 => 0
[2,1] => 1 => 1
[1,2,3] => 00 => 0
[1,3,2] => 01 => 1
[2,1,3] => 10 => 1
[2,3,1] => 01 => 1
[3,1,2] => 10 => 1
[3,2,1] => 11 => 1
[1,2,3,4] => 000 => 0
[1,2,4,3] => 001 => 1
[1,3,2,4] => 010 => 1
[1,3,4,2] => 001 => 1
[1,4,2,3] => 010 => 1
[1,4,3,2] => 011 => 1
[2,1,3,4] => 100 => 1
[2,1,4,3] => 101 => 2
[2,3,1,4] => 010 => 1
[2,3,4,1] => 001 => 1
[2,4,1,3] => 010 => 1
[2,4,3,1] => 011 => 1
[3,1,2,4] => 100 => 1
[3,1,4,2] => 101 => 2
[3,2,1,4] => 110 => 1
[3,2,4,1] => 101 => 2
[3,4,1,2] => 010 => 1
[3,4,2,1] => 011 => 1
[4,1,2,3] => 100 => 1
[4,1,3,2] => 101 => 2
[4,2,1,3] => 110 => 1
[4,2,3,1] => 101 => 2
[4,3,1,2] => 110 => 1
[4,3,2,1] => 111 => 1
[1,2,3,4,5] => 0000 => 0
[1,2,3,5,4] => 0001 => 1
[1,2,4,3,5] => 0010 => 1
[1,2,4,5,3] => 0001 => 1
[1,2,5,3,4] => 0010 => 1
[1,2,5,4,3] => 0011 => 1
[1,3,2,4,5] => 0100 => 1
[1,3,2,5,4] => 0101 => 2
[1,3,4,2,5] => 0010 => 1
[1,3,4,5,2] => 0001 => 1
[1,3,5,2,4] => 0010 => 1
[1,3,5,4,2] => 0011 => 1
[1,4,2,3,5] => 0100 => 1
[1,4,2,5,3] => 0101 => 2
[1,4,3,2,5] => 0110 => 1
[1,4,3,5,2] => 0101 => 2
[1,4,5,2,3] => 0010 => 1
[1,4,5,3,2] => 0011 => 1
Description
The number of runs of ones in a binary word.
Matching statistic: St000658
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000658: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[7,6,5,8,3,2,1,4] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2
[8,7,6,4,2,1,3,5] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
[7,6,5,4,3,2,1,8] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
[4,3,2,1,5,6,7,8] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[3,2,1,8,7,6,5,4] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
[4,3,2,1,8,7,6,5] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[4,3,2,1,7,6,8,5] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,4,3,2,1,8,7,6] => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[6,5,4,3,2,1,8,7] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[4,3,2,1,6,5,8,7] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[4,3,2,1,7,8,5,6] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[6,3,1,5,2,4,8,7] => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[4,3,2,1,6,8,5,7] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[5,4,2,8,7,1,3,6] => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[4,3,2,1,7,5,8,6] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,4,2,1,6,8,3,7] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[5,4,3,2,7,1,8,6] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[6,4,3,1,7,2,8,5] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[7,5,3,1,8,6,4,2] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[7,6,5,3,2,1,8,4] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[6,5,3,2,8,7,4,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[6,5,2,1,7,3,8,4] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[7,6,2,1,8,5,4,3] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[3,2,1,6,4,8,5,7] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[8,5,2,7,4,1,3,6] => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
Description
The number of rises of length 2 of a Dyck path. This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1]. A related statistic is the number of double rises in a Dyck path, [[St000024]].
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000659: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[7,6,5,8,3,2,1,4] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2
[8,7,6,4,2,1,3,5] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
[7,6,5,4,3,2,1,8] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
[4,3,2,1,5,6,7,8] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[3,2,1,8,7,6,5,4] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
[4,3,2,1,8,7,6,5] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[4,3,2,1,7,6,8,5] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,4,3,2,1,8,7,6] => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[6,5,4,3,2,1,8,7] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[4,3,2,1,6,5,8,7] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[4,3,2,1,7,8,5,6] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[6,3,1,5,2,4,8,7] => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[4,3,2,1,6,8,5,7] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[5,4,2,8,7,1,3,6] => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[4,3,2,1,7,5,8,6] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,4,2,1,6,8,3,7] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[5,4,3,2,7,1,8,6] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[6,4,3,1,7,2,8,5] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[7,5,3,1,8,6,4,2] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[7,6,5,3,2,1,8,4] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[6,5,3,2,8,7,4,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[6,5,2,1,7,3,8,4] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[7,6,2,1,8,5,4,3] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[3,2,1,6,4,8,5,7] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[8,5,2,7,4,1,3,6] => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
Description
The number of rises of length at least 2 of a Dyck path.
Matching statistic: St000374
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000374: Permutations ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[2,1,7,6,5,4,3] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,1,7,6,5,4,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,2,7,6,5,4,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,1,2,3,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,2,3,6,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,7,6,5,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,2,7,6,5,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,3,7,6,5,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,1,2,3,4,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,6,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,4,6,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,3,4,6,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,7,6,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,2,3,4,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,2,7,6,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,3,7,6,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,4,7,6,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,1,2,3,4,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,3,5,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,4,5,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,3,4,5,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,5,4,3,2,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,1,7,5,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,2,1,5,3,4,7] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
[6,2,1,5,4,3,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,2,3,4,5,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,2,5,4,3,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,2,7,5,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,3,1,5,4,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,2,1,5,4,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,3,2,5,4,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,5,4,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,3,7,5,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,4,1,5,3,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,2,1,5,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,2,5,3,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,3,1,5,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,2,5,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,5,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,5,3,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,4,7,5,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,5,2,1,4,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,1,4,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,2,4,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,7,4,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[7,1,3,2,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,3,5,2,4,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[7,1,4,2,3,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,4,3,2,5,6] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
[7,1,4,5,2,3,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there do not exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000703: Permutations ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[2,1,7,6,5,4,3] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,1,7,6,5,4,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,2,7,6,5,4,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,1,2,3,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,2,3,6,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,7,6,5,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,2,7,6,5,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,3,7,6,5,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,1,2,3,4,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,6,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,4,6,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,3,4,6,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,7,6,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,2,3,4,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,2,7,6,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,3,7,6,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,4,7,6,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,1,2,3,4,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,3,5,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,4,5,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,3,4,5,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,5,4,3,2,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,1,7,5,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,2,1,5,3,4,7] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
[6,2,1,5,4,3,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,2,3,4,5,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,2,5,4,3,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,2,7,5,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,3,1,5,4,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,2,1,5,4,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,3,2,5,4,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,5,4,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,3,7,5,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,4,1,5,3,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,2,1,5,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,2,5,3,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,3,1,5,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,2,5,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,5,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,5,3,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,4,7,5,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,5,2,1,4,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,1,4,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,2,4,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,7,4,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[7,1,3,2,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,3,5,2,4,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[7,1,4,2,3,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,4,3,2,5,6] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
[7,1,4,5,2,3,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
Description
The number of deficiencies of a permutation. This is defined as $$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$ The number of exceedances is [[St000155]].
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000884: Permutations ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[2,1,7,6,5,4,3] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,1,7,6,5,4,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,2,7,6,5,4,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,1,2,3,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,2,3,6,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,7,6,5,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,2,7,6,5,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,3,7,6,5,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,1,2,3,4,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,6,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,4,6,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,3,4,6,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,7,6,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,2,3,4,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,2,7,6,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,3,7,6,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,4,7,6,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,1,2,3,4,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,3,5,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,4,5,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,3,4,5,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,5,4,3,2,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,1,7,5,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,2,1,5,3,4,7] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
[6,2,1,5,4,3,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,2,3,4,5,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,2,5,4,3,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,2,7,5,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,3,1,5,4,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,2,1,5,4,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,3,2,5,4,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,5,4,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,3,7,5,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,4,1,5,3,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,2,1,5,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,2,5,3,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,3,1,5,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,2,5,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,5,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,5,3,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,4,7,5,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,5,2,1,4,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,1,4,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,2,4,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,7,4,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[7,1,3,2,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,3,5,2,4,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[7,1,4,2,3,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,4,3,2,5,6] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
[7,1,4,5,2,3,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
Description
The number of isolated descents of a permutation. A descent $i$ is isolated if neither $i+1$ nor $i-1$ are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000994: Permutations ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[2,1,7,6,5,4,3] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,1,7,6,5,4,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[3,2,7,6,5,4,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,1,2,3,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,2,3,6,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,7,6,5,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,2,7,6,5,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[4,3,7,6,5,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,1,2,3,4,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,6,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,4,6,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,3,4,6,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,7,6,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,2,3,4,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,2,7,6,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,3,7,6,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[5,4,7,6,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,1,2,3,4,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,3,5,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,4,5,7,3] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,3,4,5,7,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,5,4,3,2,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,1,7,5,4,3,2] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,2,1,5,3,4,7] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
[6,2,1,5,4,3,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,2,3,4,5,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,2,5,4,3,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,2,7,5,4,3,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,3,1,5,4,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,2,1,5,4,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,3,2,5,4,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,3,5,4,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,3,7,5,4,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,4,1,5,3,2,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,2,1,5,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,2,5,3,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,3,1,5,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,2,5,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,4,3,5,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
[6,4,5,3,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
[6,4,7,5,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[6,5,2,1,4,3,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,1,4,2,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,3,2,4,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
[6,5,7,4,3,2,1] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
[7,1,3,2,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,3,5,2,4,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[7,1,4,2,3,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[7,1,4,3,2,5,6] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
[7,1,4,5,2,3,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
Description
The number of cycle peaks and the number of cycle valleys of a permutation. A '''cycle peak''' of a permutation $\pi$ is an index $i$ such that $\pi^{-1}(i) < i > \pi(i)$. Analogously, a '''cycle valley''' is an index $i$ such that $\pi^{-1}(i) > i < \pi(i)$. Clearly, every cycle of $\pi$ contains as many peaks as valleys.
The following 56 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000834The number of right outer peaks of a permutation. St000340The number of non-final maximal constant sub-paths of length greater than one. St000251The number of nonsingleton blocks of a set partition. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St000024The number of double up and double down steps of a Dyck path. St001512The minimum rank of a graph. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001674The number of vertices of the largest induced star graph in the graph. St001354The number of series nodes in the modular decomposition of a graph. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000299The number of nonisomorphic vertex-induced subtrees. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001665The number of pure excedances of a permutation. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St000470The number of runs in a permutation. St000354The number of recoils of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000021The number of descents of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000238The number of indices that are not small weak excedances. St000316The number of non-left-to-right-maxima of a permutation. St001874Lusztig's a-function for the symmetric group. St000325The width of the tree associated to a permutation. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000353The number of inner valleys of a permutation. St000711The number of big exceedences of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000092The number of outer peaks of a permutation. St001720The minimal length of a chain of small intervals in a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001597The Frobenius rank of a skew partition. St001624The breadth of a lattice.