searching the database
Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000052
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St000660
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000660: Dyck paths ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000660: Dyck paths ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2] => [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,4] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,6] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,1,4] => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,5] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,2,1,4] => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,2,1,4] => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,5] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,5] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,5] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,3] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [5,3] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [5,3] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [5,3] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [5,3] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,6] => [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [6,1,2] => [2,1,6] => [1,1,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [6,1,2] => [2,1,6] => [1,1,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,1,0,0]
=> [6,1,2] => [2,1,6] => [1,1,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
Description
The number of rises of length at least 3 of a Dyck path.
The number of Dyck paths without such rises are counted by the Motzkin numbers [1].
Matching statistic: St000386
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6,8,7] => ?
=> ?
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,6,3,4,5,8,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,6,3,4,8,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,6,3,8,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,6,8,3,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,7,3,4,5,6,8] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,7,3,4,5,8,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,7,3,4,8,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,7,3,8,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,7,8,3,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,5,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,7,8,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,8,5,6,7] => [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,4,6,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,4,7,8,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,2,5,6,7,4,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,8,4] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,2,5,7,4,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,7,4,8,6] => ?
=> ?
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,2,5,7,8,4,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,8,4,5,6,7] => [.,[[.,.],[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,5,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,2,5,7,8,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,8,5,6,7] => [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6,8,7] => ?
=> ?
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,5,2,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,5,2,7,8,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,5,7,2,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,5,7,2,8,6] => ?
=> ?
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,5,7,8,2,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,8,2,5,6,7] => [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,3,5,2,4,6,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,3,5,2,4,7,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4,7,8,6] => ?
=> ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,3,5,2,6,4,7,8] => ?
=> ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,3,5,2,6,7,4,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,3,5,2,6,7,8,4] => ?
=> ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,3,5,2,7,4,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,3,5,2,7,4,8,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,3,5,2,7,8,4,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,3,5,6,2,4,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,3,5,6,2,7,4,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,5,6,2,7,8,4] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,3,5,6,7,2,4,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,3,5,6,7,2,8,4] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,3,5,6,7,8,2,4] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,3,5,7,2,4,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,3,5,7,2,4,8,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
Description
The number of factors DDU in a Dyck path.
Matching statistic: St000201
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [.,.]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [.,[.,.]]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [[.,.],.]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6,8] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3,5,4,7,8,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,3,5,6,4,7,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,3,5,6,7,4,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,3,5,7,4,6,8] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,3,5,7,4,8,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,3,5,7,8,4,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,4,5,6,7] => [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,3,5,6,8,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6,8,7] => ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,6,3,8,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,6,8,3,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,6,3,4,5,7,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,6,3,4,5,8,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,6,3,4,7,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,6,3,4,7,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,6,3,4,8,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,6,3,7,4,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,2,6,3,7,4,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,6,3,7,8,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,6,3,8,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,6,7,3,4,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,2,6,7,3,4,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,6,7,3,8,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,3,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,6,8,3,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,7,3,4,5,6,8] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,7,3,4,5,8,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,7,3,4,8,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,7,3,8,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,7,8,3,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,3,4,5,6,7] => [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,6,8,7] => [.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,5,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,7,8,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,5,8,6,7] => [.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,8,5,6,7] => [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> [.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,4,6,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,2,5,6,7,4,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,8,4] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0 + 1
Description
The number of leaf nodes in a binary tree.
Equivalently, the number of cherries [1] in the complete binary tree.
The number of binary trees of size $n$, at least $1$, with exactly one leaf node for is $2^{n-1}$, see [2].
The number of binary tree of size $n$, at least $3$, with exactly two leaf nodes is $n(n+1)2^{n-2}$, see [3].
Matching statistic: St000647
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000647: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000647: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,1,2,5,4,7,6] => ? = 1
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,1,2,5,4,7,6] => ? = 1
Description
The number of big descents of a permutation.
For a permutation $\pi$, this is the number of indices $i$ such that $\pi(i)-\pi(i+1) > 1$.
The generating functions of big descents is equal to the generating function of (normal) descents after sending a permutation from cycle to one-line notation [[Mp00090]], see [Theorem 2.5, 1].
For the number of small descents, see [[St000214]].
Matching statistic: St000196
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [.,.]
=> 0
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [.,[.,.]]
=> 0
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [[.,.],.]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6,8] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3,5,4,7,8,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,3,5,6,4,7,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,3,5,6,7,4,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,3,5,7,4,6,8] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,3,5,7,4,8,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,3,5,7,8,4,6] => [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,4,5,6,7] => [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,3,5,6,8,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6,8,7] => ?
=> ?
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,6,3,8,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,6,8,3,7] => [.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,6,3,4,5,7,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,6,3,4,5,8,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,6,3,4,7,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,6,3,4,7,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,6,3,4,8,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,6,3,7,4,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,2,6,3,7,4,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,6,3,7,8,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,6,3,8,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,6,7,3,4,5,8] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,2,6,7,3,4,8,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,6,7,3,8,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,3,4,5] => [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,6,8,3,4,5,7] => [.,[.,[[.,[.,[.,.]]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,[.,.]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,7,3,4,5,6,8] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,7,3,4,5,8,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,7,3,4,8,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,7,3,8,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,7,8,3,4,5,6] => [.,[.,[[.,[.,[.,[.,.]]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,[.,.]]]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,3,4,5,6,7] => [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,6,8,7] => [.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,5,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,7,8,6] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,5,8,6,7] => [.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,8,5,6,7] => [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> [.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,4,6,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,4,7,8,6] => [.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4,7,8] => [.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 0
Description
The number of occurrences of the contiguous pattern {{{[[.,.],[.,.]]}}} in a binary tree.
Equivalently, this is the number of branches in the tree, i.e. the number of nodes with two children. Binary trees avoiding this pattern are counted by $2^{n-2}$.
Matching statistic: St001022
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001022: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001022: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,2] => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,3] => [1,1,6] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,4] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,2,2,1] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,2,1,1,1] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,2,2,1] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,2,2,1] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,2,1,1,2] => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,4,2] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,4,2] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,4,2] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,4,1,1] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,4,2] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,5,1] => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,5,1] => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,5,1] => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,5,1] => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,5,1] => [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,6] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1,1] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,1,2] => [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,1,1,2,1] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,1,1,2,1] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,1,1,3] => [1,1,4,2] => [1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,1,4] => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,2,1,1,1] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,2,1] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,2,2,1] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,2,1,1,1] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
Description
Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000486
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000486: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000486: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => ? = 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,5,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,1,2,3,4,6,7] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
Description
The number of cycles of length at least 3 of a permutation.
Matching statistic: St000711
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000711: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000711: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => ? = 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,5,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,1,2,3,4,6,7] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
Description
The number of big exceedences of a permutation.
A big exceedence of a permutation $\pi$ is an index $i$ such that $\pi(i) - i > 1$.
This statistic is equidistributed with either of the numbers of big descents, big ascents, and big deficiencies.
Matching statistic: St000836
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000836: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000836: Permutations ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => ? = 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,5,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,1,2,3,4,6,7] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,1,2,3,6,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 1
Description
The number of descents of distance 2 of a permutation.
This is, $\operatorname{des}_2(\pi) = | \{ i : \pi(i) > \pi(i+2) \} |$.
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000353The number of inner valleys of a permutation. St000125The number of occurrences of the contiguous pattern [.,[[[.,.],.],. St000663The number of right floats of a permutation. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St000092The number of outer peaks of a permutation. St000646The number of big ascents of a permutation. St000837The number of ascents of distance 2 of a permutation. St001330The hat guessing number of a graph. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!