Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000064: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 2
[2,1] => 2
[1,2,3] => 3
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 3
[1,2,3,4] => 4
[1,2,4,3] => 4
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 3
[2,1,3,4] => 4
[2,1,4,3] => 4
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 0
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 0
[3,2,1,4] => 3
[3,2,4,1] => 2
[3,4,1,2] => 4
[3,4,2,1] => 4
[4,1,2,3] => 3
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 2
[4,3,1,2] => 4
[4,3,2,1] => 4
[1,2,3,4,5] => 5
[1,2,3,5,4] => 5
[1,2,4,3,5] => 4
[1,2,4,5,3] => 4
[1,2,5,3,4] => 4
[1,2,5,4,3] => 5
[1,3,2,4,5] => 4
[1,3,2,5,4] => 4
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 0
[1,3,5,4,2] => 2
[1,4,2,3,5] => 2
[1,4,2,5,3] => 0
[1,4,3,2,5] => 3
[1,4,3,5,2] => 2
[1,4,5,2,3] => 4
[1,4,5,3,2] => 4
Description
The number of one-box pattern of a permutation. This is the number of $i$ for which there is a $j$ such that $(i,\sigma_i)$ and $(j,\sigma_j)$ have distance 2 in the taxi metric on the $\mathbb{Z}^2$ grid.