searching the database
Your data matches 66 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000066
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
St000066: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000066: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
Description
The column of the unique '1' in the first row of the alternating sign matrix.
The generating function of this statistic is given by
\binom{n+k-2}{k-1}\frac{(2n-k-1)!}{(n-k)!}\;\prod_{j=0}^{n-2}\frac{(3j+1)!}{(n+j)!},
see [2].
Matching statistic: St000013
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1,0]
=> [1] => [1,0]
=> 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 7
Description
The height of a Dyck path.
The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
Matching statistic: St000054
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 2
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 5
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 5
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 6
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 5
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 7
Description
The first entry of the permutation.
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation \pi of n, together with its rotations, obtained by conjugating with the long cycle (1,\dots,n). Drawing the labels 1 to n in this order on a circle, and the arcs (i, \pi(i)) as straight lines, the rotation of \pi is obtained by replacing each number i by (i\bmod n) +1. Then, \pi(1)-1 is the number of rotations of \pi where the arc (1, \pi(1)) is a deficiency. In particular, if O(\pi) is the orbit of rotations of \pi, then the number of deficiencies of \pi equals
\frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1).
Matching statistic: St000141
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1,0]
=> [1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 7 - 1
Description
The maximum drop size of a permutation.
The maximum drop size of a permutation \pi of [n]=\{1,2,\ldots, n\} is defined to be the maximum value of i-\pi(i).
Matching statistic: St000734
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Values
[[1]]
=> [1,0]
=> [1] => [[1]]
=> 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,2] => [[1,2]]
=> 2
[[0,1],[1,0]]
=> [1,1,0,0]
=> [2,1] => [[1],[2]]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 7
Description
The last entry in the first row of a standard tableau.
Matching statistic: St000738
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000738: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000738: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Values
[[1]]
=> [1,0]
=> [1] => [[1]]
=> 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => [[1],[2]]
=> 2
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => [[1,2]]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => [[1,2],[3]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [[1,3],[2]]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [[1,2,3]]
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [[1,3],[2]]
=> 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [[1,2,3]]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[1,2],[3],[4]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,3],[2],[4]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,3],[2],[4]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[1,4],[2],[3]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,4],[2],[3]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,4],[2],[3]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 7
Description
The first entry in the last row of a standard tableau.
For the last entry in the first row, see [[St000734]].
Matching statistic: St000019
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000019: Permutations ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000019: Permutations ⟶ ℤResult quality: 90% ●values known / values provided: 96%●distinct values known / distinct values provided: 90%
Values
[[1]]
=> [1,0]
=> [1,0]
=> [1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => ? = 5 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 7 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 5 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 6 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? => ? = 7 - 1
Description
The cardinality of the support of a permutation.
A permutation \sigma may be written as a product \sigma = s_{i_1}\dots s_{i_k} with k minimal, where s_i = (i,i+1) denotes the simple transposition swapping the entries in positions i and i+1.
The set of indices \{i_1,\dots,i_k\} is the '''support''' of \sigma and independent of the chosen way to write \sigma as such a product.
See [2], Definition 1 and Proposition 10.
The '''connectivity set''' of \sigma of length n is the set of indices 1 \leq i < n such that \sigma(k) < i for all k < i.
Thus, the connectivity set is the complement of the support.
Matching statistic: St000439
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1,0]
=> [1] => [1,0]
=> 2 = 1 + 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 3 = 2 + 1
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 4 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8 + 1
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 3 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 2 + 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ?
=> ? = 5 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ?
=> ? = 8 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 6 + 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ?
=> ? = 7 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000645
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 96%●distinct values known / distinct values provided: 80%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 96%●distinct values known / distinct values provided: 80%
Values
[[1]]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 5 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 7 - 1
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between.
For a Dyck path D = D_1 \cdots D_{2n} with peaks in positions i_1 < \ldots < i_k and valleys in positions j_1 < \ldots < j_{k-1}, this statistic is given by
\sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a)
Matching statistic: St000147
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 70% ●values known / values provided: 96%●distinct values known / distinct values provided: 70%
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 70% ●values known / values provided: 96%●distinct values known / distinct values provided: 70%
Values
[[1]]
=> [1,0]
=> []
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [1,1,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 7 - 1
Description
The largest part of an integer partition.
The following 56 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000839The largest opener of a set partition. St000010The length of the partition. St001809The index of the step at the first peak of maximal height in a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000874The position of the last double rise in a Dyck path. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St000024The number of double up and double down steps of a Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St000730The maximal arc length of a set partition. St000653The last descent of a permutation. St000957The number of Bruhat lower covers of a permutation. St000011The number of touch points (or returns) of a Dyck path. St000069The number of maximal elements of a poset. St000382The first part of an integer composition. St000971The smallest closer of a set partition. St000297The number of leading ones in a binary word. St000740The last entry of a permutation. St001497The position of the largest weak excedence of a permutation. St000067The inversion number of the alternating sign matrix. St000809The reduced reflection length of the permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000316The number of non-left-to-right-maxima of a permutation. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000240The number of indices that are not small excedances. St000443The number of long tunnels of a Dyck path. St000542The number of left-to-right-minima of a permutation. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St000051The size of the left subtree of a binary tree. St000204The number of internal nodes of a binary tree. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001480The number of simple summands of the module J^2/J^3. St000061The number of nodes on the left branch of a binary tree. St000216The absolute length of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000989The number of final rises of a permutation. St000676The number of odd rises of a Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000028The number of stack-sorts needed to sort a permutation. St000840The number of closers smaller than the largest opener in a perfect matching. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000005The bounce statistic of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!