Processing math: 35%

Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00004: Alternating sign matrices rotate clockwiseAlternating sign matrices
Mp00005: Alternating sign matrices transposeAlternating sign matrices
St000066: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [[1]]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [[0,1],[1,0]]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [[1,0],[0,1]]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
Description
The column of the unique '1' in the first row of the alternating sign matrix. The generating function of this statistic is given by $$\binom{n+k-2}{k-1}\frac{(2n-k-1)!}{(n-k)!}\;\prod_{j=0}^{n-2}\frac{(3j+1)!}{(n+j)!},$$ see [2].
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000054: Permutations ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 2
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
Description
The first entry of the permutation. This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1]. This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals $$ \frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1). $$
Matching statistic: St000141
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000141: Permutations ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 3 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 7 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 6 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 5 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 2 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8 - 1
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000147
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 90% values known / values provided: 93%distinct values known / distinct values provided: 90%
Values
[[1]]
=> [[1]]
=> [1,0]
=> []
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1]
=> ? = 7 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 2 - 1
Description
The largest part of an integer partition.
Matching statistic: St000476
Mp00005: Alternating sign matrices transposeAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000476: Dyck paths ⟶ ℤResult quality: 80% values known / values provided: 93%distinct values known / distinct values provided: 80%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> ? = 1 - 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 7 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 5 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 4 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 3 - 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 8 - 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 - 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 2 - 1
[[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 - 1
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path. For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is $$ \sum_v (j_v-i_v)/2. $$
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000007: Permutations ⟶ ℤResult quality: 70% values known / values provided: 92%distinct values known / distinct values provided: 70%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [2,1] => 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,2] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? => ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 6
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ? => ? = 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ? => ? = 5
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ? => ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ? => ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ? => ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ? => ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? => ? = 8
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 3
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? => ? = 2
Description
The number of saliances of the permutation. A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000011: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 92%distinct values known / distinct values provided: 70%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000068
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St000068: Posets ⟶ ℤResult quality: 70% values known / values provided: 92%distinct values known / distinct values provided: 70%
Values
[[1]]
=> [[1]]
=> [1,0]
=> ([],1)
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ([],2)
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
Description
The number of minimal elements in a poset.
Matching statistic: St000439
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 92%distinct values known / distinct values provided: 70%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 2 = 1 + 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 + 1
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7 + 1
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5 + 1
[[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 + 1
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 1 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 + 1
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6 + 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5 + 1
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3 + 1
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2 + 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8 + 1
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8 + 1
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3 + 1
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 + 1
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000025
Mp00003: Alternating sign matrices rotate counterclockwiseAlternating sign matrices
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St000025: Dyck paths ⟶ ℤResult quality: 60% values known / values provided: 92%distinct values known / distinct values provided: 60%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ?
=> ? = 7
[[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0]]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 1
[[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 5
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 4
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 3
[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 2
[[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 8
[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> ?
=> ?
=> ?
=> ? = 8
[[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 3
[[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> ?
=> ?
=> ?
=> ? = 2
Description
The number of initial rises of a Dyck path. In other words, this is the height of the first peak of $D$.
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000678The number of up steps after the last double rise of a Dyck path. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000653The last descent of a permutation. St000740The last entry of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000314The number of left-to-right-maxima of a permutation. St001497The position of the largest weak excedence of a permutation. St000051The size of the left subtree of a binary tree. St000316The number of non-left-to-right-maxima of a permutation. St000989The number of final rises of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000654The first descent of a permutation. St001480The number of simple summands of the module J^2/J^3. St000840The number of closers smaller than the largest opener in a perfect matching. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001085The number of occurrences of the vincular pattern |21-3 in a permutation.