Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000069
St000069: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([],4)
=> 4
([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> 3
([(0,1),(0,2),(0,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 5
([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> 4
([(1,2),(1,3),(1,4)],5)
=> 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The number of maximal elements of a poset.
Matching statistic: St000068
Mp00125: Posets dual posetPosets
St000068: Posets ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 73%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(1,2),(1,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
([(2,3),(3,4)],5)
=> ([(2,3),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> ([(2,3),(2,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6)
=> ? = 2
([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ([(0,5),(1,2),(1,5),(5,3),(5,4)],6)
=> ? = 2
([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ? = 2
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(4,2),(4,3)],6)
=> ? = 2
([(0,5),(1,4),(3,5),(4,2),(4,3)],6)
=> ([(0,5),(1,2),(1,3),(3,5),(5,4)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(4,2),(4,3)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ? = 3
([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6)
=> ? = 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(1,5),(2,3),(3,4),(3,5)],6)
=> ? = 3
([(0,5),(1,2),(1,5),(5,3),(5,4)],6)
=> ([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ? = 3
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ? = 2
([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ? = 3
([(1,5),(2,3),(2,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(4,5)],6)
=> ? = 3
([(0,5),(1,2),(1,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(3,5),(4,2),(4,3)],6)
=> ? = 2
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6)
=> ? = 2
([(0,5),(1,3),(1,4),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(4,5)],6)
=> ? = 3
([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ? = 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ? = 1
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6)
=> ([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2
([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5)],6)
=> ? = 3
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ? = 2
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ? = 3
([(0,5),(1,4),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(4,2),(4,5)],6)
=> ? = 2
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ? = 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6)
=> ? = 3
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> ? = 3
([(0,5),(1,4),(2,3),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ? = 2
([(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
Description
The number of minimal elements in a poset.
Matching statistic: St001621
Mp00125: Posets dual posetPosets
Mp00195: Posets order idealsLattices
St001621: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 18%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 3
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
([(1,2),(2,3)],4)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
([(1,3),(2,3)],4)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 1
([],5)
=> ([],5)
=> ?
=> ? = 5
([(3,4)],5)
=> ([(3,4)],5)
=> ?
=> ? = 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 4
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? = 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ? = 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 2
([(2,3),(3,4)],5)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 3
([(2,4),(3,4)],5)
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ? = 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ? = 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 3
([(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? = 3
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 2
([(0,4),(1,2),(1,3)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 3
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ? = 3
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of atoms of a lattice. An element of a lattice is an '''atom''' if it covers the least element.