searching the database
Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001085
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,2] => 0 = 1 - 1
[1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 0 = 1 - 1
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St000092
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000092: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000092: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => 1
Description
The number of outer peaks of a permutation.
An outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$ or $n$ if $w_{n} > w_{n-1}$.
In other words, it is a peak in the word $[0,w_1,..., w_n,0]$.
Matching statistic: St000099
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000099: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000099: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => [3,1,2] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => [4,3,1,2] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => [4,3,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => [4,3,1,2] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,1,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => [2,4,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => [4,2,1,3] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => [4,2,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,4,2,1] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [3,2,1,4] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => [5,2,1,4,3] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => [5,2,1,4,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => [5,2,1,4,3] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [5,2,1,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [5,2,1,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => [5,2,4,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => [5,2,4,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => [5,4,2,1,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => [5,4,2,1,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => [5,4,2,1,3] => 1
Description
The number of valleys of a permutation, including the boundary.
The number of valleys excluding the boundary is [[St000353]].
Matching statistic: St000201
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [.,.]
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => [.,[.,.]]
=> 1
[1,1,0,0]
=> [2,1] => [2,1] => [[.,.],.]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => [.,[[.,.],.]]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [.,[[.,.],.]]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [[.,.],[.,.]]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [[.,[.,.]],.]
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [[[.,.],.],.]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => [[.,[[.,.],.]],.]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => [[.,[[.,.],.]],.]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [[[.,.],.],[.,.]]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [[[.,.],[.,.]],.]
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [[[.,[.,.]],.],.]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [[[[.,.],.],.],.]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 1
Description
The number of leaf nodes in a binary tree.
Equivalently, the number of cherries [1] in the complete binary tree.
The number of binary trees of size $n$, at least $1$, with exactly one leaf node for is $2^{n-1}$, see [2].
The number of binary tree of size $n$, at least $3$, with exactly two leaf nodes is $n(n+1)2^{n-2}$, see [3].
Matching statistic: St000390
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1 => 1
[1,0,1,0]
=> [1,1,0,0]
=> [2] => 10 => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1] => 11 => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => 100 => 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [3] => 100 => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 101 => 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 110 => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 111 => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 1000 => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4] => 1000 => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [4] => 1000 => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4] => 1000 => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => 1000 => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 10000 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5] => 10000 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5] => 10000 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5] => 10000 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => 10000 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => 10000 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 10000 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [5] => 10000 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => 10000 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 10001 => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => 10001 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => 10001 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 10010 => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 1
Description
The number of runs of ones in a binary word.
Matching statistic: St000023
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000023: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000023: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => [3,1,2] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [2,1,3] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => [4,3,1,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => [4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => [4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,1,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [4,3,1,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => [2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => [4,2,1,3] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => [4,2,1,3] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,4,2,1] => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [3,2,4,1] => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [3,2,1,4] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => [5,2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => [5,2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => [5,4,2,1,3] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => [5,4,2,1,3] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => [5,4,2,1,3] => 0 = 1 - 1
Description
The number of inner peaks of a permutation.
The number of peaks including the boundary is [[St000092]].
Matching statistic: St000196
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [.,.]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [.,[.,.]]
=> 0 = 1 - 1
[1,1,0,0]
=> [2,1] => [2,1] => [[.,.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => [.,[[.,.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [.,[[.,.],.]]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [[.,.],[.,.]]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [[.,[.,.]],.]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [[[.,.],.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => [[.,[[.,.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => [[.,[[.,.],.]],.]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [[[.,.],.],[.,.]]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [[[.,.],[.,.]],.]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [[[.,[.,.]],.],.]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [[[[.,.],.],.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => [[.,[.,.]],[[.,.],.]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> 0 = 1 - 1
Description
The number of occurrences of the contiguous pattern {{{[[.,.],[.,.]]}}} in a binary tree.
Equivalently, this is the number of branches in the tree, i.e. the number of nodes with two children. Binary trees avoiding this pattern are counted by $2^{n-2}$.
Matching statistic: St000292
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000292: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000292: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1 => 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [2] => 10 => 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1] => 11 => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => 100 => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [3] => 100 => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 101 => 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 110 => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 111 => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 1000 => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4] => 1000 => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [4] => 1000 => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4] => 1000 => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => 1000 => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 10001 => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => 10001 => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => 10001 => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 10010 => 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 0 = 1 - 1
Description
The number of ascents of a binary word.
Matching statistic: St001181
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001181: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001181: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0 = 1 - 1
Description
Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra.
Matching statistic: St000353
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000353: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000353: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ? = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,1,0,0]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,5,4] => 1 = 2 - 1
Description
The number of inner valleys of a permutation.
The number of valleys including the boundary is [[St000099]].
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000291The number of descents of a binary word. St000837The number of ascents of distance 2 of a permutation. St000022The number of fixed points of a permutation. St000035The number of left outer peaks of a permutation. St000243The number of cyclic valleys and cyclic peaks of a permutation. St001487The number of inner corners of a skew partition. St001737The number of descents of type 2 in a permutation. St001330The hat guessing number of a graph. St000664The number of right ropes of a permutation. St001964The interval resolution global dimension of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000779The tier of a permutation. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!