Your data matches 94 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 4
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 5
([(3,4)],5)
=> 4
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 3
([(1,4),(2,3),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00111: Graphs complementGraphs
St000097: Graphs ⟶ ℤResult quality: 35% values known / values provided: 60%distinct values known / distinct values provided: 35%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 4
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7)
=> ? = 4
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ? = 4
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ? = 3
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 3
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Mp00324: Graphs chromatic difference sequenceInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([(0,1)],2)
=> [1,1] => 1
([],3)
=> [3] => 3
([(1,2)],3)
=> [2,1] => 2
([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1
([],4)
=> [4] => 4
([(2,3)],4)
=> [3,1] => 3
([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,2)],4)
=> [2,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1
([],5)
=> [5] => 5
([(3,4)],5)
=> [4,1] => 4
([(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,3)],5)
=> [3,2] => 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ? = 6
([],0)
=> ? => ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
Description
The largest part of an integer composition.
Mp00324: Graphs chromatic difference sequenceInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([(0,1)],2)
=> [1,1] => 1
([],3)
=> [3] => 3
([(1,2)],3)
=> [2,1] => 2
([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1
([],4)
=> [4] => 4
([(2,3)],4)
=> [3,1] => 3
([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,2)],4)
=> [2,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1
([],5)
=> [5] => 5
([(3,4)],5)
=> [4,1] => 4
([(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,3)],5)
=> [3,2] => 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ? = 6
([],0)
=> ? => ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? = 3
Description
The first part of an integer composition.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => [1,0]
=> 1
([],2)
=> [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,3)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ?
=> ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 6
([],0)
=> ? => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000025
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000025: Dyck paths ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => [1,0]
=> 1
([],2)
=> [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,3)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ?
=> ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 6
([],0)
=> ? => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
Description
The number of initial rises of a Dyck path. In other words, this is the height of the first peak of $D$.
Matching statistic: St000026
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000026: Dyck paths ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => [1,0]
=> 1
([],2)
=> [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(1,4),(2,3)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ?
=> ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 6
([],0)
=> ? => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
Description
The position of the first return of a Dyck path.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => [1]
=> 1
([],2)
=> [2] => [2]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> 1
([],3)
=> [3] => [3]
=> 3
([(1,2)],3)
=> [2,1] => [2,1]
=> 2
([(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> 1
([],4)
=> [4] => [4]
=> 4
([(2,3)],4)
=> [3,1] => [3,1]
=> 3
([(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 3
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 1
([],5)
=> [5] => [5]
=> 5
([(3,4)],5)
=> [4,1] => [4,1]
=> 4
([(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> 4
([(1,4),(2,3)],5)
=> [3,2] => [3,2]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ?
=> ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 6
([],0)
=> ? => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
Description
The largest part of an integer partition.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00038: Integer compositions reverseInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => [1] => 1
([],2)
=> [2] => [2] => 2
([(0,1)],2)
=> [1,1] => [1,1] => 1
([],3)
=> [3] => [3] => 3
([(1,2)],3)
=> [2,1] => [1,2] => 2
([(0,2),(1,2)],3)
=> [2,1] => [1,2] => 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => 1
([],4)
=> [4] => [4] => 4
([(2,3)],4)
=> [3,1] => [1,3] => 3
([(1,3),(2,3)],4)
=> [3,1] => [1,3] => 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,3] => 3
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2] => 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 1
([],5)
=> [5] => [5] => 5
([(3,4)],5)
=> [4,1] => [1,4] => 4
([(2,4),(3,4)],5)
=> [4,1] => [1,4] => 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => 4
([(1,4),(2,3)],5)
=> [3,2] => [2,3] => 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [2,3] => 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [2,3] => 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ? => ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ? => ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ? => ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ? => ? = 6
([],0)
=> ? => ? => ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ? => ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ? => ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ? => ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ? => ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ? => ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ? => ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ? => ? = 3
Description
The last part of an integer composition.
Matching statistic: St000723
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000723: Graphs ⟶ ℤResult quality: 30% values known / values provided: 48%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1] => ([],1)
=> 1
([],2)
=> [2] => ([],2)
=> 2
([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([],3)
=> [3] => ([],3)
=> 3
([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> [4] => ([],4)
=> 4
([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> [5] => ([],5)
=> 5
([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 7
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 5
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ? => ?
=> ? = 6
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 6
([],0)
=> ? => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 2
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? => ?
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? => ?
=> ? = 3
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(2,3),(2,6),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 3
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? => ?
=> ? = 3
Description
The maximal cardinality of a set of vertices with the same neighbourhood in a graph. The set of so called mating graphs, for which this statistic equals $1$, is enumerated by [1].
The following 84 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001809The index of the step at the first peak of maximal height in a Dyck path. St000439The position of the first down step of a Dyck path. St000010The length of the partition. St000273The domination number of a graph. St000297The number of leading ones in a binary word. St000363The number of minimal vertex covers of a graph. St000392The length of the longest run of ones in a binary word. St000544The cop number of a graph. St000676The number of odd rises of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000734The last entry in the first row of a standard tableau. St000916The packing number of a graph. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001415The length of the longest palindromic prefix of a binary word. St001829The common independence number of a graph. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000444The length of the maximal rise of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001322The size of a minimal independent dominating set in a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001316The domatic number of a graph. St000741The Colin de Verdière graph invariant. St000778The metric dimension of a graph. St001949The rigidity index of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000482The (zero)-forcing number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000917The open packing number of a graph. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001286The annihilation number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001530The depth of a Dyck path. St001654The monophonic hull number of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001814The number of partitions interlacing the given partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001330The hat guessing number of a graph. St000667The greatest common divisor of the parts of the partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000992The alternating sum of the parts of an integer partition. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001571The Cartan determinant of the integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000454The largest eigenvalue of a graph if it is integral. St000477The weight of a partition according to Alladi. St000668The least common multiple of the parts of the partition. St000770The major index of an integer partition when read from bottom to top. St001674The number of vertices of the largest induced star graph in the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001323The independence gap of a graph. St001651The Frankl number of a lattice. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001890The maximum magnitude of the Möbius function of a poset.