searching the database
Your data matches 69 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000527
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00209: Permutations —pattern poset⟶ Posets
St000527: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000527: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 1
[1,2] => ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The width of the poset.
This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000010
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> 1
[1,2] => ([(0,1)],2)
=> [2]
=> 1
[2,1] => ([(0,1)],2)
=> [2]
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 1
Description
The length of the partition.
Matching statistic: St000097
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,2] => ([(0,1)],2)
=> ([],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 1
Description
The order of the largest clique of the graph.
A clique in a graph G is a subset U⊆V(G) such that any pair of vertices in U are adjacent. I.e. the subgraph induced by U is a complete graph.
Matching statistic: St000098
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,2] => ([(0,1)],2)
=> ([],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 1
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000533
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000533: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000533: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> 1
[1,2] => ([(0,1)],2)
=> [2]
=> 1
[2,1] => ([(0,1)],2)
=> [2]
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 1
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000093
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 1
[1,2] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number α(G) of G.
Matching statistic: St000147
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1]
=> 1
[1,2] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 4
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 4
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1
Description
The largest part of an integer partition.
Matching statistic: St000225
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,2] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St000319
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,2] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The spin of an integer partition.
The Ferrers shape of an integer partition λ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of λ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),().
The first strip (5,5,4,4,2,1)∖(4,3,3,1) crosses 4 times, the second strip (4,3,3,1)∖(2,2) crosses 3 times, the strip (2,2)∖(1) crosses 1 time, and the remaining strip (1)∖() does not cross.
This yields the spin of (5,5,4,4,2,1) to be 4+3+1=8.
Matching statistic: St000320
Mp00209: Permutations —pattern poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,2] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 0 = 1 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 0 = 1 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 3 = 4 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 2 = 3 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 1 = 2 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0 = 1 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
[7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0 = 1 - 1
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition λ=(λ1,…,λk) can be decomposed into border strips. For 0≤j<λ1 let nj be the length of the border strip starting at (λ1−j,0).
The dinv adjustment is then defined by
∑j:nj>0(λ1−1−j).
The following example is taken from Appendix B in [2]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),
and we obtain (n0,…,n4)=(10,7,0,3,1).
The dinv adjustment is thus 4+3+1+0=8.
The following 59 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001388The number of non-attacking neighbors of a permutation. St000785The number of distinct colouring schemes of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001644The dimension of a graph. St001792The arboricity of a graph. St001962The proper pathwidth of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001323The independence gap of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000632The jump number of the poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000822The Hadwiger number of the graph. St001330The hat guessing number of a graph. St001642The Prague dimension of a graph. St001734The lettericity of a graph. St000640The rank of the largest boolean interval in a poset. St000454The largest eigenvalue of a graph if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000455The second largest eigenvalue of a graph if it is integral. St001624The breadth of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000264The girth of a graph, which is not a tree. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000236The number of cyclical small weak excedances. St000241The number of cyclical small excedances. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St000768The number of peaks in an integer composition. St001470The cyclic holeyness of a permutation. St001964The interval resolution global dimension of a poset. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001488The number of corners of a skew partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!