Processing math: 0%

Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000145
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000145: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 2
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1]
=> 0
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 1
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 2
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> -3
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> -1
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> -1
[2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> -1
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 0
[2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
Description
The Dyson rank of a partition. This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences p(5n+4) \equiv 0 \pmod 5 and p(7n+6) \equiv 0 \pmod 7.