Your data matches 65 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00023: Dyck paths to non-crossing permutationPermutations
St000162: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of nontrivial cycles in the cycle decomposition of a permutation. This statistic is equal to the difference of the number of cycles of $\pi$ (see [[St000031]]) and the number of fixed points of $\pi$ (see [[St000022]]).
Mp00023: Dyck paths to non-crossing permutationPermutations
St000703: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of deficiencies of a permutation. This is defined as $$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$ The number of exceedances is [[St000155]].
Mp00023: Dyck paths to non-crossing permutationPermutations
St000994: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of cycle peaks and the number of cycle valleys of a permutation. A '''cycle peak''' of a permutation $\pi$ is an index $i$ such that $\pi^{-1}(i) < i > \pi(i)$. Analogously, a '''cycle valley''' is an index $i$ such that $\pi^{-1}(i) > i < \pi(i)$. Clearly, every cycle of $\pi$ contains as many peaks as valleys.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001188: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
Description
The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. Also the number of simple modules that are isolated vertices in the sense of 4.5. (4) in the reference.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001244: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
Description
The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. For the projective dimension see [[St001007]] and for 1-regularity see [[St001126]]. After applying the inverse zeta map [[Mp00032]], this statistic matches the number of rises of length at least 2 [[St000659]].
Mp00023: Dyck paths to non-crossing permutationPermutations
St001269: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation.
Mp00023: Dyck paths to non-crossing permutationPermutations
St001665: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of pure excedances of a permutation. A pure excedance of a permutation $\pi$ is a position $i < \pi_i$ such that there is no $j < i$ with $i\leq \pi_j < \pi_i$.
Mp00023: Dyck paths to non-crossing permutationPermutations
St001729: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of visible descents of a permutation. A visible descent of a permutation $\pi$ is a position $i$ such that $\pi(i+1) \leq \min(i, \pi(i))$.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000021: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,5,2,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,3,5,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,4,1,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => 2
Description
The number of descents of a permutation. This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000035: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,2,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,5,3,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,4,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,3,5,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,3,2,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,4,2,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,4,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,2,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,2,1] => 2
Description
The number of left outer peaks of a permutation. A left outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$. In other words, it is a peak in the word $[0,w_1,..., w_n]$. This appears in [1, def.3.1]. The joint distribution with [[St000366]] is studied in [3], where left outer peaks are called ''exterior peaks''.
The following 55 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000155The number of exceedances (also excedences) of a permutation. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000374The number of exclusive right-to-left minima of a permutation. St000884The number of isolated descents of a permutation. St001280The number of parts of an integer partition that are at least two. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St000201The number of leaf nodes in a binary tree. St000325The width of the tree associated to a permutation. St000470The number of runs in a permutation. St000157The number of descents of a standard tableau. St000211The rank of the set partition. St000245The number of ascents of a permutation. St000386The number of factors DDU in a Dyck path. St000632The jump number of the poset. St000662The staircase size of the code of a permutation. St000834The number of right outer peaks of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001298The number of repeated entries in the Lehmer code of a permutation. St001840The number of descents of a set partition. St000068The number of minimal elements in a poset. St000071The number of maximal chains in a poset. St000527The width of the poset. St000251The number of nonsingleton blocks of a set partition. St000659The number of rises of length at least 2 of a Dyck path. St000288The number of ones in a binary word. St000354The number of recoils of a permutation. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000919The number of maximal left branches of a binary tree. St000702The number of weak deficiencies of a permutation. St001427The number of descents of a signed permutation. St001083The number of boxed occurrences of 132 in a permutation. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St001489The maximum of the number of descents and the number of inverse descents. St000711The number of big exceedences of a permutation. St001728The number of invisible descents of a permutation. St000647The number of big descents of a permutation. St000523The number of 2-protected nodes of a rooted tree. St000710The number of big deficiencies of a permutation. St000779The tier of a permutation. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000640The rank of the largest boolean interval in a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001864The number of excedances of a signed permutation. St001597The Frobenius rank of a skew partition. St001905The number of preferred parking spots in a parking function less than the index of the car. St000317The cycle descent number of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St001946The number of descents in a parking function. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001624The breadth of a lattice.