Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000171: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([],5)
=> 0
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 4
Description
The degree of the graph. This is the maximal vertex degree of a graph.
Mp00259: Graphs vertex additionGraphs
St001742: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 71%
Values
([],1)
=> ([],2)
=> 0
([],2)
=> ([],3)
=> 0
([(0,1)],2)
=> ([(1,2)],3)
=> 1
([],3)
=> ([],4)
=> 0
([(1,2)],3)
=> ([(2,3)],4)
=> 1
([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([],4)
=> ([],5)
=> 0
([(2,3)],4)
=> ([(3,4)],5)
=> 1
([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([],5)
=> ([],6)
=> 0
([(3,4)],5)
=> ([(4,5)],6)
=> 1
([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 4
([],6)
=> ([],7)
=> ? = 0
([(4,5)],6)
=> ([(5,6)],7)
=> ? = 1
([(3,5),(4,5)],6)
=> ([(4,6),(5,6)],7)
=> ? = 2
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 5
([(2,5),(3,4)],6)
=> ([(3,6),(4,5)],7)
=> ? = 1
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 2
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> ([(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 5
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The difference of the maximal and the minimal degree in a graph. The graph is regular if and only if this statistic is zero.