searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000202
Values
([2],3)
=> 3
([1,1],3)
=> 3
([3,1],3)
=> 5
([2,1,1],3)
=> 5
([4,2],3)
=> 6
([3,1,1],3)
=> 7
([2,2,1,1],3)
=> 6
([5,3,1],3)
=> 9
([4,2,1,1],3)
=> 10
([3,2,2,1,1],3)
=> 9
([5,3,1,1],3)
=> 12
([4,2,2,1,1],3)
=> 12
([2],4)
=> 3
([1,1],4)
=> 3
([3],4)
=> 4
([2,1],4)
=> 5
([1,1,1],4)
=> 4
([4,1],4)
=> 7
([2,2],4)
=> 6
([3,1,1],4)
=> 8
([2,1,1,1],4)
=> 7
([5,2],4)
=> 9
([4,1,1],4)
=> 10
([3,2,1],4)
=> 10
([3,1,1,1],4)
=> 10
([2,2,1,1,1],4)
=> 9
([6,3],4)
=> 10
([5,2,1],4)
=> 14
([4,1,1,1],4)
=> 13
([4,2,2],4)
=> 13
([3,3,1,1],4)
=> 13
([3,2,1,1,1],4)
=> 14
([2,2,2,1,1,1],4)
=> 10
([2],5)
=> 3
([1,1],5)
=> 3
([3],5)
=> 4
([2,1],5)
=> 5
([1,1,1],5)
=> 4
([4],5)
=> 5
([3,1],5)
=> 7
([2,2],5)
=> 6
([2,1,1],5)
=> 7
([1,1,1,1],5)
=> 5
([5,1],5)
=> 9
([3,2],5)
=> 9
([4,1,1],5)
=> 11
([2,2,1],5)
=> 9
([3,1,1,1],5)
=> 11
([2,1,1,1,1],5)
=> 9
([6,2],5)
=> 12
Description
The number of k-cores contained in the k-core.
Let $\lambda$ and $\mu$ be $k$-cores. Then $\lambda$ contains $\mu$ if and only if the Ferrers diagram of $\lambda$ contains the diagram of $\mu$. Each nonempty core trivially contains two other cores, the empty core and itself. The poset corresponding to containment is Young's lattice restricted to cores [1].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!