searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000022
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 0
Description
The number of fixed points of a permutation.
Matching statistic: St000117
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000117: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000117: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
Description
The number of centered tunnels of a Dyck path.
A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b==n then the tunnel is called centered.
Matching statistic: St000221
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000221: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000221: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 0
Description
The number of strong fixed points of a permutation.
$i$ is called a strong fixed point of $\pi$ if
1. $j < i$ implies $\pi_j < \pi_i$, and
2. $j > i$ implies $\pi_j > \pi_i$
This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3].
The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see [[St000314]].
Matching statistic: St000241
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000241: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000241: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0
Description
The number of cyclical small excedances.
A cyclical small excedance is an index $i$ such that $\pi_i = i+1$ considered cyclically.
Matching statistic: St000895
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000895: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000895: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [[1]]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
Description
The number of ones on the main diagonal of an alternating sign matrix.
Matching statistic: St001008
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001008: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001008: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
Description
Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000674
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> ? = 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
Description
The number of hills of a Dyck path.
A hill is a peak with up step starting and down step ending at height zero.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!