searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001120
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001120: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001120: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
Description
The length of a longest path in a graph.
Matching statistic: St001093
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4 = 3 + 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 5 + 1
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 5 + 1
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 5 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 5 = 4 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 4 + 1
Description
The detour number of a graph.
This is the number of vertices in a longest induced path in a graph.
Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Matching statistic: St000619
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Values
[.,.]
=> [.,.]
=> [.,.]
=> [1] => ? = 0
[[.,.],.]
=> [.,[.,.]]
=> [[.,.],.]
=> [1,2] => 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => 2
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> [1,3,2] => 2
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 2
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 3
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => 3
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => 2
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => 3
[[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 2
[[.,[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 3
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => 3
[[.,[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 3
[[.,[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 4
[[[.,.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 3
[[[.,.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 4
[[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 3
[[[[.,.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 4
[[[.,[.,[.,.]]],.],.]
=> [.,[.,[[[.,.],.],.]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 2
[[[.,[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],.]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 3
[[[[.,.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 3
[[[[.,[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],.]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 3
[[[[[.,.],.],.],.],.]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [[.,[[[.,.],[.,.]],.]],.]
=> [2,4,3,5,1,6] => 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => 3
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [[.,[[[.,.],.],[.,.]]],.]
=> [2,3,5,4,1,6] => 3
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,[.,.]],[.,.]]],.]
=> [3,2,5,4,1,6] => 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [[.,[[.,.],[[.,.],.]]],.]
=> [2,4,5,3,1,6] => 3
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> [2,5,4,3,1,6] => 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => 3
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => 4
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> [3,5,4,2,1,6] => 4
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => 4
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [2,3,4,1,6,5] => 3
[[[.,.],[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => 4
[[[.,.],[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => 4
[[[.,.],[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => 4
[[[.,.],[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [2,3,1,5,6,4] => 3
[[[.,[.,.]],[[.,.],.]],.]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => 4
[[[[.,.],.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => 4
[[[[.,.],.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [2,1,4,5,6,3] => 3
[[[.,[[.,.],.]],[.,.]],.]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => 4
[[[[.,.],[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => 4
[[[[.,[.,.]],.],[.,.]],.]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => 4
[[[[[.,.],.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => 5
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => ? = 2
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => ? = 3
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [[.,[[[[.,.],[.,.]],.],.]],.]
=> [2,4,3,5,6,1,7] => ? = 3
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => ? = 3
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => ? = 4
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [[.,[[[[.,.],.],[.,.]],.]],.]
=> [2,3,5,4,6,1,7] => ? = 3
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [[.,[[[.,[.,.]],[.,.]],.]],.]
=> [3,2,5,4,6,1,7] => ? = 4
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],.]
=> [2,4,5,3,6,1,7] => ? = 3
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],.]
=> [2,5,4,3,6,1,7] => ? = 4
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => ? = 3
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => ? = 4
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> [3,5,4,2,6,1,7] => ? = 4
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => ? = 4
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => ? = 5
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [[.,[[[[.,.],.],.],[.,.]]],.]
=> [2,3,4,6,5,1,7] => ? = 3
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [[.,[[[.,[.,.]],.],[.,.]]],.]
=> [3,2,4,6,5,1,7] => ? = 4
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],.]
=> [2,4,3,6,5,1,7] => ? = 4
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> [3,4,2,6,5,1,7] => ? = 4
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [4,3,2,6,5,1,7] => ? = 5
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [[.,[[[.,.],.],[[.,.],.]]],.]
=> [2,3,5,6,4,1,7] => ? = 3
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> [3,2,5,6,4,1,7] => ? = 4
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,[.,.]]]],.]
=> [2,3,6,5,4,1,7] => ? = 4
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [3,2,6,5,4,1,7] => ? = 5
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> [2,4,5,6,3,1,7] => ? = 3
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> [2,5,4,6,3,1,7] => ? = 4
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[.,.],[[.,.],[.,.]]]],.]
=> [2,4,6,5,3,1,7] => ? = 4
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[.,[[.,.],[.,[[.,.],.]]]],.]
=> [2,5,6,4,3,1,7] => ? = 4
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [2,6,5,4,3,1,7] => ? = 5
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> [3,4,5,6,2,1,7] => ? = 3
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => ? = 4
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> [3,5,4,6,2,1,7] => ? = 4
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => ? = 4
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => ? = 5
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[.,[[[.,.],.],[.,.]]]],.]
=> [3,4,6,5,2,1,7] => ? = 4
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [4,3,6,5,2,1,7] => ? = 4
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> [3,5,6,4,2,1,7] => ? = 4
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [3,6,5,4,2,1,7] => ? = 5
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => ? = 4
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => ? = 5
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [4,6,5,3,2,1,7] => ? = 5
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => ? = 5
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => ? = 6
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],[.,.]]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [2,3,4,5,1,7,6] => ? = 3
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],[.,.]]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [3,2,4,5,1,7,6] => ? = 4
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],[.,.]]]
=> [[.,[[[.,.],[.,.]],.]],[.,.]]
=> [2,4,3,5,1,7,6] => ? = 4
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],[.,.]]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [3,4,2,5,1,7,6] => ? = 4
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [4,3,2,5,1,7,6] => ? = 5
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],[.,.]]]
=> [[.,[[[.,.],.],[.,.]]],[.,.]]
=> [2,3,5,4,1,7,6] => ? = 4
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],[.,.]]]
=> [[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [3,2,5,4,1,7,6] => ? = 4
Description
The number of cyclic descents of a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is given by the number of indices $1 \leq i \leq n$ such that $\pi(i) > \pi(i+1)$ where we set $\pi(n+1) = \pi(1)$.
Matching statistic: St000354
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000354: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Values
[.,.]
=> [.,.]
=> [.,.]
=> [1] => ? = 0 - 1
[[.,.],.]
=> [.,[.,.]]
=> [[.,.],.]
=> [1,2] => 0 = 1 - 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => 1 = 2 - 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> [1,3,2] => 1 = 2 - 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1 = 2 - 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 2 = 3 - 1
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => 2 = 3 - 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => 1 = 2 - 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => 2 = 3 - 1
[[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 1 = 2 - 1
[[.,[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 2 = 3 - 1
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => 2 = 3 - 1
[[.,[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 2 = 3 - 1
[[.,[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 3 = 4 - 1
[[[.,.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 2 = 3 - 1
[[[.,.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 3 = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 2 = 3 - 1
[[[[.,.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 3 = 4 - 1
[[[.,[.,[.,.]]],.],.]
=> [.,[.,[[[.,.],.],.]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 1 = 2 - 1
[[[.,[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],.]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 2 = 3 - 1
[[[[.,.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 2 = 3 - 1
[[[[.,[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],.]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 2 = 3 - 1
[[[[[.,.],.],.],.],.]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 3 = 4 - 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => 1 = 2 - 1
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => 2 = 3 - 1
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [[.,[[[.,.],[.,.]],.]],.]
=> [2,4,3,5,1,6] => 2 = 3 - 1
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => 2 = 3 - 1
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => 3 = 4 - 1
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [[.,[[[.,.],.],[.,.]]],.]
=> [2,3,5,4,1,6] => 2 = 3 - 1
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,[.,.]],[.,.]]],.]
=> [3,2,5,4,1,6] => 3 = 4 - 1
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [[.,[[.,.],[[.,.],.]]],.]
=> [2,4,5,3,1,6] => 2 = 3 - 1
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> [2,5,4,3,1,6] => 3 = 4 - 1
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => 2 = 3 - 1
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => 3 = 4 - 1
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> [3,5,4,2,1,6] => 3 = 4 - 1
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => 3 = 4 - 1
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => 4 = 5 - 1
[[[.,.],[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [2,3,4,1,6,5] => 2 = 3 - 1
[[[.,.],[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => 3 = 4 - 1
[[[.,.],[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => 3 = 4 - 1
[[[.,.],[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => 3 = 4 - 1
[[[.,.],[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => 4 = 5 - 1
[[[.,[.,.]],[.,[.,.]]],.]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [2,3,1,5,6,4] => 2 = 3 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => 3 = 4 - 1
[[[[.,.],.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => 3 = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => 4 = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [2,1,4,5,6,3] => 2 = 3 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => 3 = 4 - 1
[[[[.,.],[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => 3 = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => 3 = 4 - 1
[[[[[.,.],.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => 4 = 5 - 1
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => ? = 2 - 1
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [[.,[[[[.,.],[.,.]],.],.]],.]
=> [2,4,3,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => ? = 4 - 1
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [[.,[[[[.,.],.],[.,.]],.]],.]
=> [2,3,5,4,6,1,7] => ? = 3 - 1
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [[.,[[[.,[.,.]],[.,.]],.]],.]
=> [3,2,5,4,6,1,7] => ? = 4 - 1
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],.]
=> [2,4,5,3,6,1,7] => ? = 3 - 1
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],.]
=> [2,5,4,3,6,1,7] => ? = 4 - 1
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => ? = 3 - 1
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> [3,5,4,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => ? = 5 - 1
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [[.,[[[[.,.],.],.],[.,.]]],.]
=> [2,3,4,6,5,1,7] => ? = 3 - 1
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [[.,[[[.,[.,.]],.],[.,.]]],.]
=> [3,2,4,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],.]
=> [2,4,3,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> [3,4,2,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [4,3,2,6,5,1,7] => ? = 5 - 1
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [[.,[[[.,.],.],[[.,.],.]]],.]
=> [2,3,5,6,4,1,7] => ? = 3 - 1
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> [3,2,5,6,4,1,7] => ? = 4 - 1
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,[.,.]]]],.]
=> [2,3,6,5,4,1,7] => ? = 4 - 1
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [3,2,6,5,4,1,7] => ? = 5 - 1
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> [2,4,5,6,3,1,7] => ? = 3 - 1
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> [2,5,4,6,3,1,7] => ? = 4 - 1
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[.,.],[[.,.],[.,.]]]],.]
=> [2,4,6,5,3,1,7] => ? = 4 - 1
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[.,[[.,.],[.,[[.,.],.]]]],.]
=> [2,5,6,4,3,1,7] => ? = 4 - 1
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [2,6,5,4,3,1,7] => ? = 5 - 1
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> [3,4,5,6,2,1,7] => ? = 3 - 1
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> [3,5,4,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => ? = 5 - 1
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[.,[[[.,.],.],[.,.]]]],.]
=> [3,4,6,5,2,1,7] => ? = 4 - 1
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [4,3,6,5,2,1,7] => ? = 4 - 1
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> [3,5,6,4,2,1,7] => ? = 4 - 1
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [3,6,5,4,2,1,7] => ? = 5 - 1
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => ? = 4 - 1
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => ? = 5 - 1
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [4,6,5,3,2,1,7] => ? = 5 - 1
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => ? = 5 - 1
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => ? = 6 - 1
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],[.,.]]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [2,3,4,5,1,7,6] => ? = 3 - 1
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],[.,.]]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [3,2,4,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],[.,.]]]
=> [[.,[[[.,.],[.,.]],.]],[.,.]]
=> [2,4,3,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],[.,.]]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [3,4,2,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [4,3,2,5,1,7,6] => ? = 5 - 1
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],[.,.]]]
=> [[.,[[[.,.],.],[.,.]]],[.,.]]
=> [2,3,5,4,1,7,6] => ? = 4 - 1
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],[.,.]]]
=> [[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [3,2,5,4,1,7,6] => ? = 4 - 1
Description
The number of recoils of a permutation.
A '''recoil''', or '''inverse descent''' of a permutation $\pi$ is a value $i$ such that $i+1$ appears to the left of $i$ in $\pi_1,\pi_2,\dots,\pi_n$.
In other words, this is the number of descents of the inverse permutation. It can be also be described as the number of occurrences of the mesh pattern $([2,1], {(0,1),(1,1),(2,1)})$, i.e., the middle row is shaded.
Matching statistic: St000829
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000829: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000829: Permutations ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 71%
Values
[.,.]
=> [.,.]
=> [.,.]
=> [1] => ? = 0 - 1
[[.,.],.]
=> [.,[.,.]]
=> [[.,.],.]
=> [1,2] => 0 = 1 - 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => 1 = 2 - 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> [1,3,2] => 1 = 2 - 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1 = 2 - 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 2 = 3 - 1
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => 2 = 3 - 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => 1 = 2 - 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => 2 = 3 - 1
[[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 1 = 2 - 1
[[.,[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 2 = 3 - 1
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => 2 = 3 - 1
[[.,[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 2 = 3 - 1
[[.,[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 3 = 4 - 1
[[[.,.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 2 = 3 - 1
[[[.,.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 3 = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 2 = 3 - 1
[[[[.,.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 3 = 4 - 1
[[[.,[.,[.,.]]],.],.]
=> [.,[.,[[[.,.],.],.]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 1 = 2 - 1
[[[.,[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],.]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 2 = 3 - 1
[[[[.,.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 2 = 3 - 1
[[[[.,[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],.]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 2 = 3 - 1
[[[[[.,.],.],.],.],.]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 3 = 4 - 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => 1 = 2 - 1
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => 2 = 3 - 1
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [[.,[[[.,.],[.,.]],.]],.]
=> [2,4,3,5,1,6] => 2 = 3 - 1
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => 2 = 3 - 1
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => 3 = 4 - 1
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [[.,[[[.,.],.],[.,.]]],.]
=> [2,3,5,4,1,6] => 2 = 3 - 1
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,[.,.]],[.,.]]],.]
=> [3,2,5,4,1,6] => 3 = 4 - 1
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [[.,[[.,.],[[.,.],.]]],.]
=> [2,4,5,3,1,6] => 2 = 3 - 1
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> [2,5,4,3,1,6] => 3 = 4 - 1
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => 2 = 3 - 1
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => 3 = 4 - 1
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> [3,5,4,2,1,6] => 3 = 4 - 1
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => 3 = 4 - 1
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => 4 = 5 - 1
[[[.,.],[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [2,3,4,1,6,5] => 2 = 3 - 1
[[[.,.],[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => 3 = 4 - 1
[[[.,.],[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => 3 = 4 - 1
[[[.,.],[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => 3 = 4 - 1
[[[.,.],[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => 4 = 5 - 1
[[[.,[.,.]],[.,[.,.]]],.]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [2,3,1,5,6,4] => 2 = 3 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => 3 = 4 - 1
[[[[.,.],.],[.,[.,.]]],.]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => 3 = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => 4 = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [2,1,4,5,6,3] => 2 = 3 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => 3 = 4 - 1
[[[[.,.],[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => 3 = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => 3 = 4 - 1
[[[[[.,.],.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => 4 = 5 - 1
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => ? = 2 - 1
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [[.,[[[[.,.],[.,.]],.],.]],.]
=> [2,4,3,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => ? = 3 - 1
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => ? = 4 - 1
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [[.,[[[[.,.],.],[.,.]],.]],.]
=> [2,3,5,4,6,1,7] => ? = 3 - 1
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [[.,[[[.,[.,.]],[.,.]],.]],.]
=> [3,2,5,4,6,1,7] => ? = 4 - 1
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],.]
=> [2,4,5,3,6,1,7] => ? = 3 - 1
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],.]
=> [2,5,4,3,6,1,7] => ? = 4 - 1
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => ? = 3 - 1
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> [3,5,4,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => ? = 4 - 1
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => ? = 5 - 1
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [[.,[[[[.,.],.],.],[.,.]]],.]
=> [2,3,4,6,5,1,7] => ? = 3 - 1
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [[.,[[[.,[.,.]],.],[.,.]]],.]
=> [3,2,4,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],.]
=> [2,4,3,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> [3,4,2,6,5,1,7] => ? = 4 - 1
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [4,3,2,6,5,1,7] => ? = 5 - 1
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [[.,[[[.,.],.],[[.,.],.]]],.]
=> [2,3,5,6,4,1,7] => ? = 3 - 1
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> [3,2,5,6,4,1,7] => ? = 4 - 1
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,[.,.]]]],.]
=> [2,3,6,5,4,1,7] => ? = 4 - 1
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [3,2,6,5,4,1,7] => ? = 5 - 1
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> [2,4,5,6,3,1,7] => ? = 3 - 1
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> [2,5,4,6,3,1,7] => ? = 4 - 1
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[.,.],[[.,.],[.,.]]]],.]
=> [2,4,6,5,3,1,7] => ? = 4 - 1
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[.,[[.,.],[.,[[.,.],.]]]],.]
=> [2,5,6,4,3,1,7] => ? = 4 - 1
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [2,6,5,4,3,1,7] => ? = 5 - 1
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> [3,4,5,6,2,1,7] => ? = 3 - 1
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> [3,5,4,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => ? = 4 - 1
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => ? = 5 - 1
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[.,[[[.,.],.],[.,.]]]],.]
=> [3,4,6,5,2,1,7] => ? = 4 - 1
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [4,3,6,5,2,1,7] => ? = 4 - 1
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> [3,5,6,4,2,1,7] => ? = 4 - 1
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [3,6,5,4,2,1,7] => ? = 5 - 1
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => ? = 4 - 1
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => ? = 5 - 1
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [4,6,5,3,2,1,7] => ? = 5 - 1
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => ? = 5 - 1
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => ? = 6 - 1
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [.,[[[[[.,.],.],.],.],[.,.]]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [2,3,4,5,1,7,6] => ? = 3 - 1
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [.,[[[[.,[.,.]],.],.],[.,.]]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [3,2,4,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [.,[[[[.,.],[.,.]],.],[.,.]]]
=> [[.,[[[.,.],[.,.]],.]],[.,.]]
=> [2,4,3,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [.,[[[.,[[.,.],.]],.],[.,.]]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [3,4,2,5,1,7,6] => ? = 4 - 1
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [4,3,2,5,1,7,6] => ? = 5 - 1
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,.]],[.,.]]]
=> [[.,[[[.,.],.],[.,.]]],[.,.]]
=> [2,3,5,4,1,7,6] => ? = 4 - 1
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[.,.]],[.,.]]]
=> [[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [3,2,5,4,1,7,6] => ? = 4 - 1
Description
The Ulam distance of a permutation to the identity permutation.
This is, for a permutation $\pi$ of $n$, given by $n$ minus the length of the longest increasing subsequence of $\pi^{-1}$.
In other words, this statistic plus [[St000062]] equals $n$.
Matching statistic: St001004
Mp00019: Binary trees —right rotate⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [1] => [1] => 1 = 0 + 1
[[.,.],.]
=> [.,[.,.]]
=> [2,1] => [1,2] => 2 = 1 + 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[[[.,.],.],.]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,1,3] => 3 = 2 + 1
[[.,[.,[.,.]]],.]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,1,2] => 3 = 2 + 1
[[.,[[.,.],.]],.]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,4,1,2] => 4 = 3 + 1
[[[.,.],[.,.]],.]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,1,3] => 4 = 3 + 1
[[[.,[.,.]],.],.]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,2,1,4] => 3 = 2 + 1
[[[[.,.],.],.],.]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [2,3,1,4] => 4 = 3 + 1
[[.,[.,[.,[.,.]]]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,3,1,2] => 3 = 2 + 1
[[.,[.,[[.,.],.]]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [4,5,3,1,2] => 4 = 3 + 1
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [3,5,4,1,2] => 4 = 3 + 1
[[.,[[.,[.,.]],.]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,3,5,1,2] => 4 = 3 + 1
[[.,[[[.,.],.],.]],.]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [3,4,5,1,2] => 5 = 4 + 1
[[[.,.],[.,[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,4,1,3] => 4 = 3 + 1
[[[.,.],[[.,.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,4,5,1,3] => 5 = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,2,5,1,4] => 4 = 3 + 1
[[[[.,.],.],[.,.]],.]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [2,3,5,1,4] => 5 = 4 + 1
[[[.,[.,[.,.]]],.],.]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,3,2,1,5] => 3 = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,4,2,1,5] => 4 = 3 + 1
[[[[.,.],[.,.]],.],.]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 4 = 3 + 1
[[[[.,[.,.]],.],.],.]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 4 = 3 + 1
[[[[[.,.],.],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 5 = 4 + 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [5,4,3,2,6,1] => [6,5,4,3,1,2] => 3 = 2 + 1
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => [5,6,4,3,1,2] => 4 = 3 + 1
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [3,5,4,2,6,1] => [4,6,5,3,1,2] => 4 = 3 + 1
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => [5,4,6,3,1,2] => 4 = 3 + 1
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [3,4,5,2,6,1] => [4,5,6,3,1,2] => 5 = 4 + 1
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [2,5,4,3,6,1] => [3,6,5,4,1,2] => 4 = 3 + 1
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [2,4,5,3,6,1] => [3,5,6,4,1,2] => 5 = 4 + 1
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => [4,3,6,5,1,2] => 4 = 3 + 1
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [2,3,5,4,6,1] => [3,4,6,5,1,2] => 5 = 4 + 1
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => [5,4,3,6,1,2] => 4 = 3 + 1
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [3,4,2,5,6,1] => [4,5,3,6,1,2] => 5 = 4 + 1
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [2,4,3,5,6,1] => [3,5,4,6,1,2] => 5 = 4 + 1
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [3,2,4,5,6,1] => [4,3,5,6,1,2] => 5 = 4 + 1
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [3,4,5,6,1,2] => 6 = 5 + 1
[[[.,.],[.,[.,[.,.]]]],.]
=> [[.,.],[[.,[.,[.,.]]],.]]
=> [1,5,4,3,6,2] => [2,6,5,4,1,3] => 4 = 3 + 1
[[[.,.],[.,[[.,.],.]]],.]
=> [[.,.],[[.,[[.,.],.]],.]]
=> [1,4,5,3,6,2] => [2,5,6,4,1,3] => 5 = 4 + 1
[[[.,.],[[.,.],[.,.]]],.]
=> [[.,.],[[[.,.],[.,.]],.]]
=> [1,3,5,4,6,2] => [2,4,6,5,1,3] => 5 = 4 + 1
[[[.,.],[[.,[.,.]],.]],.]
=> [[.,.],[[[.,[.,.]],.],.]]
=> [1,4,3,5,6,2] => [2,5,4,6,1,3] => 5 = 4 + 1
[[[.,.],[[[.,.],.],.]],.]
=> [[.,.],[[[[.,.],.],.],.]]
=> [1,3,4,5,6,2] => [2,4,5,6,1,3] => 6 = 5 + 1
[[[.,[.,.]],[.,[.,.]]],.]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => [3,2,6,5,1,4] => 4 = 3 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [2,1,4,5,6,3] => [3,2,5,6,1,4] => 5 = 4 + 1
[[[[.,.],.],[.,[.,.]]],.]
=> [[[.,.],.],[[.,[.,.]],.]]
=> [1,2,5,4,6,3] => [2,3,6,5,1,4] => 5 = 4 + 1
[[[[.,.],.],[[.,.],.]],.]
=> [[[.,.],.],[[[.,.],.],.]]
=> [1,2,4,5,6,3] => [2,3,5,6,1,4] => 6 = 5 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => [4,3,2,6,1,5] => 4 = 3 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [2,3,1,5,6,4] => [3,4,2,6,1,5] => 5 = 4 + 1
[[[[.,.],[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[[.,.],.]]
=> [1,3,2,5,6,4] => [2,4,3,6,1,5] => 5 = 4 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> [[[.,[.,.]],.],[[.,.],.]]
=> [2,1,3,5,6,4] => [3,2,4,6,1,5] => 5 = 4 + 1
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [5,6,4,3,2,7,1] => [6,7,5,4,3,1,2] => ? = 3 + 1
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [4,6,5,3,2,7,1] => [5,7,6,4,3,1,2] => ? = 3 + 1
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [5,4,6,3,2,7,1] => [6,5,7,4,3,1,2] => ? = 3 + 1
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [4,5,6,3,2,7,1] => [5,6,7,4,3,1,2] => ? = 4 + 1
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [3,6,5,4,2,7,1] => [4,7,6,5,3,1,2] => ? = 3 + 1
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [3,5,6,4,2,7,1] => [4,6,7,5,3,1,2] => ? = 4 + 1
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [4,3,6,5,2,7,1] => [5,4,7,6,3,1,2] => ? = 3 + 1
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [3,4,6,5,2,7,1] => [4,5,7,6,3,1,2] => ? = 4 + 1
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [5,4,3,6,2,7,1] => [6,5,4,7,3,1,2] => ? = 3 + 1
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [4,5,3,6,2,7,1] => [5,6,4,7,3,1,2] => ? = 4 + 1
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [3,5,4,6,2,7,1] => [4,6,5,7,3,1,2] => ? = 4 + 1
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [4,3,5,6,2,7,1] => [5,4,6,7,3,1,2] => ? = 4 + 1
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [3,4,5,6,2,7,1] => [4,5,6,7,3,1,2] => ? = 5 + 1
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [2,6,5,4,3,7,1] => [3,7,6,5,4,1,2] => ? = 3 + 1
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [2,5,6,4,3,7,1] => [3,6,7,5,4,1,2] => ? = 4 + 1
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [2,4,6,5,3,7,1] => [3,5,7,6,4,1,2] => ? = 4 + 1
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [2,5,4,6,3,7,1] => [3,6,5,7,4,1,2] => ? = 4 + 1
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [2,4,5,6,3,7,1] => [3,5,6,7,4,1,2] => ? = 5 + 1
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [3,2,6,5,4,7,1] => [4,3,7,6,5,1,2] => ? = 3 + 1
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [3,2,5,6,4,7,1] => [4,3,6,7,5,1,2] => ? = 4 + 1
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [2,3,6,5,4,7,1] => [3,4,7,6,5,1,2] => ? = 4 + 1
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [2,3,5,6,4,7,1] => [3,4,6,7,5,1,2] => ? = 5 + 1
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [4,3,2,6,5,7,1] => [5,4,3,7,6,1,2] => ? = 3 + 1
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [3,4,2,6,5,7,1] => [4,5,3,7,6,1,2] => ? = 4 + 1
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [2,4,3,6,5,7,1] => [3,5,4,7,6,1,2] => ? = 4 + 1
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [3,2,4,6,5,7,1] => [4,3,5,7,6,1,2] => ? = 4 + 1
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [2,3,4,6,5,7,1] => [3,4,5,7,6,1,2] => ? = 5 + 1
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [5,4,3,2,6,7,1] => [6,5,4,3,7,1,2] => ? = 3 + 1
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [4,5,3,2,6,7,1] => [5,6,4,3,7,1,2] => ? = 4 + 1
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [3,5,4,2,6,7,1] => [4,6,5,3,7,1,2] => ? = 4 + 1
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [4,3,5,2,6,7,1] => [5,4,6,3,7,1,2] => ? = 4 + 1
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [3,4,5,2,6,7,1] => [4,5,6,3,7,1,2] => ? = 5 + 1
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [2,5,4,3,6,7,1] => [3,6,5,4,7,1,2] => ? = 4 + 1
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [2,4,5,3,6,7,1] => [3,5,6,4,7,1,2] => ? = 4 + 1
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [3,2,5,4,6,7,1] => [4,3,6,5,7,1,2] => ? = 4 + 1
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [2,3,5,4,6,7,1] => [3,4,6,5,7,1,2] => ? = 5 + 1
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [4,3,2,5,6,7,1] => [5,4,3,6,7,1,2] => ? = 4 + 1
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [3,4,2,5,6,7,1] => [4,5,3,6,7,1,2] => ? = 5 + 1
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [2,4,3,5,6,7,1] => [3,5,4,6,7,1,2] => ? = 5 + 1
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [3,2,4,5,6,7,1] => [4,3,5,6,7,1,2] => ? = 5 + 1
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [1,6,5,4,3,7,2] => [2,7,6,5,4,1,3] => ? = 3 + 1
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [[.,.],[[.,[.,[[.,.],.]]],.]]
=> [1,5,6,4,3,7,2] => [2,6,7,5,4,1,3] => ? = 4 + 1
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [[.,.],[[.,[[.,.],[.,.]]],.]]
=> [1,4,6,5,3,7,2] => [2,5,7,6,4,1,3] => ? = 4 + 1
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [[.,.],[[.,[[.,[.,.]],.]],.]]
=> [1,5,4,6,3,7,2] => [2,6,5,7,4,1,3] => ? = 4 + 1
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [[.,.],[[.,[[[.,.],.],.]],.]]
=> [1,4,5,6,3,7,2] => [2,5,6,7,4,1,3] => ? = 5 + 1
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [[.,.],[[[.,.],[.,[.,.]]],.]]
=> [1,3,6,5,4,7,2] => [2,4,7,6,5,1,3] => ? = 4 + 1
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [[.,.],[[[.,.],[[.,.],.]],.]]
=> [1,3,5,6,4,7,2] => [2,4,6,7,5,1,3] => ? = 4 + 1
[[[.,.],[[.,[.,.]],[.,.]]],.]
=> [[.,.],[[[.,[.,.]],[.,.]],.]]
=> [1,4,3,6,5,7,2] => [2,5,4,7,6,1,3] => ? = 4 + 1
[[[.,.],[[[.,.],.],[.,.]]],.]
=> [[.,.],[[[[.,.],.],[.,.]],.]]
=> [1,3,4,6,5,7,2] => [2,4,5,7,6,1,3] => ? = 5 + 1
[[[.,.],[[.,[.,[.,.]]],.]],.]
=> [[.,.],[[[.,[.,[.,.]]],.],.]]
=> [1,5,4,3,6,7,2] => [2,6,5,4,7,1,3] => ? = 4 + 1
Description
The number of indices that are either left-to-right maxima or right-to-left minima.
The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].
Matching statistic: St000552
Mp00019: Binary trees —right rotate⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000552: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000552: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Values
[.,.]
=> [.,.]
=> [[]]
=> ([(0,1)],2)
=> 0
[[.,.],.]
=> [.,[.,.]]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[.,.],.],.]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[.,[.,[.,.]]],.]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[.,[[.,.],.]],.]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[[.,.],[.,.]],.]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[[.,[.,.]],.],.]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[[.,.],.],.],.]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[.,[.,[.,[.,.]]]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[.,[.,[[.,.],.]]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[.,[[.,[.,.]],.]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[.,[[[.,.],.],.]],.]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> [[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[.,.],[[.,.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[[.,.],.],[.,.]],.]
=> [[[.,.],.],[[.,.],.]]
=> [[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[[.,[[.,.],.]],.],.]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[.,.],[.,.]],.],.]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[.,[.,.]],.],.],.]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[[[.,.],.],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [[],[[],[[],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [[],[[],[[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [[],[[[],[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [[],[[[[]]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [[],[[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [[],[[[],[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [[],[[[[]],[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [[],[[[[],[]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [[.,.],[[.,[.,[.,.]]],.]]
=> [[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[[.,.],[.,[[.,.],.]]],.]
=> [[.,.],[[.,[[.,.],.]],.]]
=> [[[]],[[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[.,.],[[.,.],[.,.]]],.]
=> [[.,.],[[[.,.],[.,.]],.]]
=> [[[]],[[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[.,.],[[.,[.,.]],.]],.]
=> [[.,.],[[[.,[.,.]],.],.]]
=> [[[]],[[[],[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[.,.],[[[.,.],.],.]],.]
=> [[.,.],[[[[.,.],.],.],.]]
=> [[[]],[[[[]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [[[],[]],[[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[[[.,[.,.]],[[.,.],.]],.]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [[[],[]],[[[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[[.,.],.],[.,[.,.]]],.]
=> [[[.,.],.],[[.,[.,.]],.]]
=> [[[[]]],[[],[]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [[[.,.],.],[[[.,.],.],.]]
=> [[[[]]],[[[]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [[[],[],[]],[[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[[.,[[.,.],.]],[.,.]],.]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [[[],[[]]],[[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[[.,.],[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[[.,.],.]]
=> [[[[]],[]],[[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [[[.,[.,.]],.],[[.,.],.]]
=> [[[[],[]]],[[]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[],[[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 2
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[],[[],[],[],[[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[],[[],[],[[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[],[[],[],[[],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[],[[],[],[[[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[],[[],[[]],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[],[[],[[]],[[]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[],[[],[[],[]],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[],[[],[[[]]],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[],[[],[[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[],[[],[[],[[]]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[],[[],[[[]],[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[],[[],[[[],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ? = 4
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[],[[],[[[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[],[[[]],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[],[[[]],[],[[]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[],[[[]],[[]],[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[],[[[]],[[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [[],[[[]],[[[]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[],[[[],[]],[],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[],[[[],[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [[],[[[[]]],[],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [[],[[[[]]],[[]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [[],[[[],[],[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[],[[[],[[]]],[]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [[],[[[[]],[]],[]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [[],[[[[],[]]],[]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ? = 4
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [[],[[[[[]]]],[]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[],[[[],[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[],[[[],[],[[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[],[[[],[[]],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[],[[[],[[],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[],[[[],[[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [[],[[[[]],[],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [[],[[[[]],[[]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [[],[[[[],[]],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [[],[[[[[]]],[]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[],[[[[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8)
=> ? = 4
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[],[[[[],[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [[],[[[[[]],[]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[],[[[[[],[]]]]]]
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [[],[[[[[[]]]]]]]
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [[[]],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [[.,.],[[.,[.,[[.,.],.]]],.]]
=> [[[]],[[],[],[[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [[.,.],[[.,[[.,.],[.,.]]],.]]
=> [[[]],[[],[[]],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [[.,.],[[.,[[.,[.,.]],.]],.]]
=> [[[]],[[],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [[.,.],[[.,[[[.,.],.],.]],.]]
=> [[[]],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [[.,.],[[[.,.],[.,[.,.]]],.]]
=> [[[]],[[[]],[],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [[.,.],[[[.,.],[[.,.],.]],.]]
=> [[[]],[[[]],[[]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 4
[[[.,.],[[.,[.,.]],[.,.]]],.]
=> [[.,.],[[[.,[.,.]],[.,.]],.]]
=> [[[]],[[[],[]],[]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
Description
The number of cut vertices of a graph.
A cut vertex is one whose deletion increases the number of connected components.
Matching statistic: St001649
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001649: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001649: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,.],[[.,.],.]]],.]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[.,[[[.,.],.],[.,.]]],.]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[.,[[.,[[.,.],.]],.]],.]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,.],[.,.]],.]],.]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,.],[.,[[.,.],.]]],.]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,.],[.,.]]],.]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[.,.],[[.,[.,.]],.]],.]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[.,.],[[[.,.],.],.]],.]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[.,[[.,.],.]],[.,.]],.]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,.],[.,.]],[.,.]],.]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [6,4,5,3,2,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 4
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [6,5,3,4,2,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [5,6,3,4,2,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [6,4,3,5,2,1,7] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [6,3,4,5,2,1,7] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 4
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [5,3,4,6,2,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 4
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [3,4,5,6,2,1,7] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 5
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [6,5,4,2,3,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [5,6,4,2,3,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [6,4,5,2,3,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [5,4,6,2,3,1,7] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [4,5,6,2,3,1,7] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [6,5,3,2,4,1,7] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [5,6,3,2,4,1,7] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [6,5,2,3,4,1,7] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 4
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [5,6,2,3,4,1,7] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [6,4,3,2,5,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [6,3,4,2,5,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [6,4,2,3,5,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [6,3,2,4,5,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 4
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [6,2,3,4,5,1,7] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 5
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [5,3,4,2,6,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [5,4,2,3,6,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [4,5,2,3,6,1,7] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [5,3,2,4,6,1,7] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [5,2,3,4,6,1,7] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 4
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [4,2,3,5,6,1,7] => ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 5
[[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 6
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [6,5,4,3,1,2,7] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [5,6,4,3,1,2,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [6,4,5,3,1,2,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [5,4,6,3,1,2,7] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [4,5,6,3,1,2,7] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 5
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [6,5,3,4,1,2,7] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [5,6,3,4,1,2,7] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 4
[[[.,.],[[.,[.,.]],[.,.]]],.]
=> [6,4,3,5,1,2,7] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4
Description
The length of a longest trail in a graph.
A trail is a sequence of distinct edges, such that two consecutive edges share a vertex.
Matching statistic: St001692
Mp00019: Binary trees —right rotate⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St001692: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St001692: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 86%
Values
[.,.]
=> [.,.]
=> [[]]
=> ([(0,1)],2)
=> 0
[[.,.],.]
=> [.,[.,.]]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[.,.],.],.]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[.,[.,[.,.]]],.]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[.,[[.,.],.]],.]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[[.,.],[.,.]],.]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[[.,[.,.]],.],.]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[[.,.],.],.],.]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[.,[.,[.,[.,.]]]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[.,[.,[[.,.],.]]],.]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[.,[[.,[.,.]],.]],.]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[.,[[[.,.],.],.]],.]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> [[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[.,.],[[.,.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[[.,.],.],[.,.]],.]
=> [[[.,.],.],[[.,.],.]]
=> [[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[[.,[[.,.],.]],.],.]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[.,.],[.,.]],.],.]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[.,[.,.]],.],.],.]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[[[.,.],.],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 4
[[.,[.,[.,[.,[.,.]]]]],.]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[[.,[.,[.,[[.,.],.]]]],.]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[.,.],[.,.]]]],.]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[.,[.,.]],.]]],.]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [[],[[],[[],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[.,[[[.,.],.],.]]],.]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [[],[[],[[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[.,.],[.,[.,.]]]],.]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[[.,.],[[.,.],.]]],.]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 4
[[.,[[.,[.,.]],[.,.]]],.]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [[],[[[],[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 3
[[.,[[[.,.],.],[.,.]]],.]
=> [.,[[[[.,.],.],[.,.]],.]]
=> [[],[[[[]]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[.,[.,[.,.]]],.]],.]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> [[],[[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[.,[[.,[[.,.],.]],.]],.]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [[],[[[],[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[[.,.],[.,.]],.]],.]
=> [.,[[[[.,.],[.,.]],.],.]]
=> [[],[[[[]],[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[.,[[[.,[.,.]],.],.]],.]
=> [.,[[[[.,[.,.]],.],.],.]]
=> [[],[[[[],[]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[.,[[[[.,.],.],.],.]],.]
=> [.,[[[[[.,.],.],.],.],.]]
=> [[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,.],[.,[.,[.,.]]]],.]
=> [[.,.],[[.,[.,[.,.]]],.]]
=> [[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[[.,.],[.,[[.,.],.]]],.]
=> [[.,.],[[.,[[.,.],.]],.]]
=> [[[]],[[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[.,.],[[.,.],[.,.]]],.]
=> [[.,.],[[[.,.],[.,.]],.]]
=> [[[]],[[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[.,.],[[.,[.,.]],.]],.]
=> [[.,.],[[[.,[.,.]],.],.]]
=> [[[]],[[[],[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[.,.],[[[.,.],.],.]],.]
=> [[.,.],[[[[.,.],.],.],.]]
=> [[[]],[[[[]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,[.,.]],[.,[.,.]]],.]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [[[],[]],[[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[[[.,[.,.]],[[.,.],.]],.]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [[[],[]],[[[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[[.,.],.],[.,[.,.]]],.]
=> [[[.,.],.],[[.,[.,.]],.]]
=> [[[[]]],[[],[]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [[[.,.],.],[[[.,.],.],.]]
=> [[[[]]],[[[]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [[[],[],[]],[[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[[[.,[[.,.],.]],[.,.]],.]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [[[],[[]]],[[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[[.,.],[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[[.,.],.]]
=> [[[[]],[]],[[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [[[.,[.,.]],.],[[.,.],.]]
=> [[[[],[]]],[[]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 4
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[],[[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 2
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[],[[],[],[],[[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[],[[],[],[[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[],[[],[],[[],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[],[[],[],[[[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[],[[],[[]],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[],[[],[[]],[[]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[],[[],[[],[]],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[],[[],[[[]]],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[],[[],[[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[],[[],[[],[[]]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[],[[],[[[]],[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[],[[],[[[],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ? = 4
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[],[[],[[[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[],[[[]],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[],[[[]],[],[[]]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[],[[[]],[[]],[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[],[[[]],[[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [[],[[[]],[[[]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[],[[[],[]],[],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[.,[[.,[.,.]],[[.,.],.]]],.]
=> [.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[],[[[],[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,.],.],[.,[.,.]]]],.]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [[],[[[[]]],[],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[[.,.],.],[[.,.],.]]],.]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [[],[[[[]]],[[]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [[],[[[],[],[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[[.,[[.,.],.]],[.,.]]],.]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[],[[[],[[]]],[]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,.],[.,.]],[.,.]]],.]
=> [.,[[[[.,.],[.,.]],[.,.]],.]]
=> [[],[[[[]],[]],[]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,[.,.]],.],[.,.]]],.]
=> [.,[[[[.,[.,.]],.],[.,.]],.]]
=> [[],[[[[],[]]],[]]]
=> ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> ? = 4
[[.,[[[[.,.],.],.],[.,.]]],.]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [[],[[[[[]]]],[]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[],[[[],[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[.,[[.,[.,[[.,.],.]]],.]],.]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[],[[[],[],[[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[.,[[.,.],[.,.]]],.]],.]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[],[[[],[[]],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[.,[[.,[.,.]],.]],.]],.]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[],[[[],[[],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[.,[[.,[[[.,.],.],.]],.]],.]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[],[[[],[[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[.,[[[.,.],[.,[.,.]]],.]],.]
=> [.,[[[[.,.],[.,[.,.]]],.],.]]
=> [[],[[[[]],[],[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[.,[[[.,.],[[.,.],.]],.]],.]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [[],[[[[]],[[]]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 4
[[.,[[[.,[.,.]],[.,.]],.]],.]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [[],[[[[],[]],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[.,[[[[.,.],.],[.,.]],.]],.]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [[],[[[[[]]],[]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[.,[[[.,[.,[.,.]]],.],.]],.]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[],[[[[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8)
=> ? = 4
[[.,[[[.,[[.,.],.]],.],.]],.]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[],[[[[],[[]]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[[[.,.],[.,.]],.],.]],.]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [[],[[[[[]],[]]]]]
=> ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8)
=> ? = 5
[[.,[[[[.,[.,.]],.],.],.]],.]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[],[[[[[],[]]]]]]
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [[],[[[[[[]]]]]]]
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6
[[[.,.],[.,[.,[.,[.,.]]]]],.]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [[[]],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 3
[[[.,.],[.,[.,[[.,.],.]]]],.]
=> [[.,.],[[.,[.,[[.,.],.]]],.]]
=> [[[]],[[],[],[[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[.,.],[.,.]]]],.]
=> [[.,.],[[.,[[.,.],[.,.]]],.]]
=> [[[]],[[],[[]],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[.,[.,.]],.]]],.]
=> [[.,.],[[.,[[.,[.,.]],.]],.]]
=> [[[]],[[],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
[[[.,.],[.,[[[.,.],.],.]]],.]
=> [[.,.],[[.,[[[.,.],.],.]],.]]
=> [[[]],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
[[[.,.],[[.,.],[.,[.,.]]]],.]
=> [[.,.],[[[.,.],[.,[.,.]]],.]]
=> [[[]],[[[]],[],[]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 4
[[[.,.],[[.,.],[[.,.],.]]],.]
=> [[.,.],[[[.,.],[[.,.],.]],.]]
=> [[[]],[[[]],[[]]]]
=> ([(0,6),(1,5),(2,4),(3,4),(3,7),(5,7),(6,7)],8)
=> ? = 4
[[[.,.],[[.,[.,.]],[.,.]]],.]
=> [[.,.],[[[.,[.,.]],[.,.]],.]]
=> [[[]],[[[],[]],[]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 4
Description
The number of vertices with higher degree than the average degree in a graph.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000083The number of left oriented leafs of a binary tree except the first one. St000702The number of weak deficiencies of a permutation. St000216The absolute length of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001246The maximal difference between two consecutive entries of a permutation. St001668The number of points of the poset minus the width of the poset. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!