Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00081: Standard tableaux reading word permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> [3,1,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,2],[3,4]]
=> [3,4,1,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [3,5,6,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [3,4,6,1,5,2] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00294: Standard tableaux peak compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 29%
Values
[[1]]
=> [1] => [1] => ([],1)
=> ? = 0 - 2
[[1],[2]]
=> [2] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[[1,2],[3]]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[[1],[2],[3]]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[[1,2,3],[4]]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[[1,3],[2,4]]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[[1,2],[3,4]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 2
[[1,3],[2],[4]]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[[1,2],[3],[4]]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[[1],[2],[3],[4]]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[[1,2,3,4],[5]]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[1,3,4],[2,5]]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[1,2,4],[3,5]]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 2
[[1,2,3],[4,5]]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 2
[[1,3,4],[2],[5]]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[1,2,4],[3],[5]]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[1,2,3],[4],[5]]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[1,4],[2,5],[3]]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[1,3],[2,5],[4]]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[1,2],[3,5],[4]]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 2
[[1,3],[2,4],[5]]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 2
[[1,4],[2],[3],[5]]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[1,3],[2],[4],[5]]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[1,2],[3],[4],[5]]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[1],[2],[3],[4],[5]]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[[1,2,3,4,5],[6]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,3,4,5],[2,6]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,2,4,5],[3,6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,3,5],[4,6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,3,4],[5,6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3,4,5],[2],[6]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,2,4,5],[3],[6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,3,5],[4],[6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,3,4],[5],[6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,3,5],[2,4,6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,5],[3,4,6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3,4],[2,5,6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,3],[4,5,6]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,4,5],[2,6],[3]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,3,5],[2,6],[4]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,5],[3,6],[4]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3,4],[2,6],[5]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,3],[4,6],[5]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3,5],[2,4],[6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,5],[3,4],[6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,3,4],[2,5],[6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2,4],[3,5],[6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,2,3],[4,5],[6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,4,5],[2],[3],[6]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,3,5],[2],[4],[6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,5],[3],[4],[6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,3,4],[2],[5],[6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,4],[3],[5],[6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2,3],[4],[5],[6]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,4],[2,5],[3,6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3],[2,5],[4,6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2],[3,5],[4,6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,3],[2,4],[5,6]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 2
[[1,5],[2,6],[3],[4]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1,4],[2,6],[3],[5]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,3],[2,6],[4],[5]]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[1,2],[3,6],[4],[5]]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,4],[2,5],[3],[6]]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,3],[2,5],[4],[6]]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[1,2],[3,5],[4],[6]]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 2
[[1,5],[2],[3],[4],[6]]
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[1],[2],[3],[4],[5],[6]]
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
[[1,2,3,4,5,6],[7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,3,4,5,6],[2,7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,3,4,5,6],[2],[7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,4,5,6],[2,7],[3]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,4,5,6],[2],[3],[7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,5,6],[2,7],[3],[4]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,5,6],[2],[3],[4],[7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,6],[2,7],[3],[4],[5]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1,6],[2],[3],[4],[5],[7]]
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[[1],[2],[3],[4],[5],[6],[7]]
=> [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 1 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.