Processing math: 100%

Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 0
([],2)
=> [2] => [1] => ([],1)
=> 0
([],3)
=> [3] => [1] => ([],1)
=> 0
([(1,2)],3)
=> [1,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1
([],4)
=> [4] => [1] => ([],1)
=> 0
([(2,3)],4)
=> [1,3] => [1,1] => ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 1
([],5)
=> [5] => [1] => ([],1)
=> 0
([(3,4)],5)
=> [1,4] => [1,1] => ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 1
([],6)
=> [6] => [1] => ([],1)
=> 0
([(4,5)],6)
=> [1,5] => [1,1] => ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St001093
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
([],2)
=> [2] => [1] => ([],1)
=> 1 = 0 + 1
([],3)
=> [3] => [1] => ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> [1,2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([],4)
=> [4] => [1] => ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> [1,3] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([],5)
=> [5] => [1] => ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> [1,4] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([],6)
=> [6] => [1] => ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> [1,5] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
Description
The detour number of a graph. This is the number of vertices in a longest induced path in a graph. Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Matching statistic: St001418
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001418: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 0 - 1
([],2)
=> [2] => [1] => [1,0]
=> ? = 0 - 1
([],3)
=> [3] => [1] => [1,0]
=> ? = 0 - 1
([(1,2)],3)
=> [1,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],4)
=> [4] => [1] => [1,0]
=> ? = 0 - 1
([(2,3)],4)
=> [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],5)
=> [5] => [1] => [1,0]
=> ? = 0 - 1
([(3,4)],5)
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],6)
=> [6] => [1] => [1,0]
=> ? = 0 - 1
([(4,5)],6)
=> [1,5] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([],7)
=> [7] => [1] => [1,0]
=> ? = 0 - 1
([],8)
=> [8] => [1] => [1,0]
=> ? = 0 - 1
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Matching statistic: St000455
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 67% values known / values provided: 79%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => ([],1)
=> ? = 0 - 2
([],2)
=> [2] => [1] => ([],1)
=> ? = 0 - 2
([],3)
=> [3] => [1] => ([],1)
=> ? = 0 - 2
([(1,2)],3)
=> [1,2] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([],4)
=> [4] => [1] => ([],1)
=> ? = 0 - 2
([(2,3)],4)
=> [1,3] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([],5)
=> [5] => [1] => ([],1)
=> ? = 0 - 2
([(3,4)],5)
=> [1,4] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([],6)
=> [6] => [1] => ([],1)
=> ? = 0 - 2
([(4,5)],6)
=> [1,5] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([],7)
=> [7] => [1] => ([],1)
=> ? = 0 - 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,2,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [2,1,1,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001431
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 68%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 0 - 1
([],2)
=> [2] => [1] => [1,0]
=> ? = 0 - 1
([],3)
=> [3] => [1] => [1,0]
=> ? = 0 - 1
([(1,2)],3)
=> [1,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],4)
=> [4] => [1] => [1,0]
=> ? = 0 - 1
([(2,3)],4)
=> [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],5)
=> [5] => [1] => [1,0]
=> ? = 0 - 1
([(3,4)],5)
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],6)
=> [6] => [1] => [1,0]
=> ? = 0 - 1
([(4,5)],6)
=> [1,5] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([],7)
=> [7] => [1] => [1,0]
=> ? = 0 - 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 - 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 - 1
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
([],2)
=> [2] => [2] => ([],2)
=> 1 = 0 + 1
([],3)
=> [3] => [3] => ([],3)
=> 1 = 0 + 1
([(1,2)],3)
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
([],4)
=> [4] => [4] => ([],4)
=> 1 = 0 + 1
([(2,3)],4)
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
([],5)
=> [5] => [5] => ([],5)
=> 1 = 0 + 1
([(3,4)],5)
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(1,4),(2,3)],5)
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
([],6)
=> [6] => [6] => ([],6)
=> 1 = 0 + 1
([(4,5)],6)
=> [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(3,5),(4,5)],6)
=> [1,1,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(2,5),(3,4)],6)
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 2 = 1 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2 = 1 + 1
([(5,6)],7)
=> [1,6] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.