Processing math: 59%

Your data matches 296 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
Description
The detour number of a graph. This is the number of vertices in a longest induced path in a graph. Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 0
([(0,1)],2)
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001418: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 100%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1,0]
=> ? = 0 - 1
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001035: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 100%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1]
=> [1,0]
=> ? = 0 - 1
([(0,1)],2)
=> [1,1] => [1,1]
=> [1,1,0,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path. A parallelogram polyomino is k-convex if k is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino. For example, any rotation of a Ferrers shape has convexity degree at most one. The (bivariate) generating function is given in Theorem 2 of [1].
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => ([],1)
=> ? = 0 - 2
([(0,1)],2)
=> [1,1] => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,1,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,1,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,1,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 98%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0 - 1
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? = 1 - 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 1 = 2 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> ? = 1 - 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Mp00111: Graphs complementGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 98%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> ? = 0 - 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> [1]
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> [1]
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> [1]
=> ? = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> [1]
=> ? = 1 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1 = 2 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> [1]
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ([],1)
=> [1]
=> ? = 1 - 1
Description
The smallest positive integer that does not appear twice in the partition.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000699: Graphs ⟶ ℤResult quality: 33% values known / values provided: 98%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1] => [1] => ([],1)
=> ? = 0 - 2
([(0,1)],2)
=> [1,1] => [1,1] => ([(0,1)],2)
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 - 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 2
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 2
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph. A graph G is t-tough if G cannot be split into k different connected components by the removal of fewer than tk vertices for all integers k>1. The toughness of G is the maximal number t such that G is t-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero. This statistic is the toughness multiplied by the least common multiple of 1,,n1, where n is the number of vertices of G.
Mp00111: Graphs complementGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000929: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 98%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> ? = 0 - 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> [1]
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> [1]
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> [1]
=> ? = 1 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> [1]
=> ? = 1 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0 = 2 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 2 - 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 = 2 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0 = 2 - 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 0 = 2 - 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> 0 = 2 - 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> [1]
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ([],1)
=> [1]
=> ? = 1 - 2
Description
The constant term of the character polynomial of an integer partition. The definition of the character polynomial can be found in [1]. Indeed, this constant term is 0 for partitions λ1n and 1 for λ=1n.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001593: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 98%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0 - 2
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? = 1 - 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? = 1 - 2
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 0 = 2 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> ? = 1 - 2
Description
This is the number of standard Young tableaux of the given shifted shape. For an integer partition λ=(λ1,,λk), the shifted diagram is obtained by moving the i-th row in the diagram i1 boxes to the right, i.e., λ={(i,j)|1ik,ijλi+i1}. In particular, this statistic is zero if and only if λi+1=λi for some i.
The following 286 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001657The number of twos in an integer partition. St000003The number of standard Young tableaux of the partition. St000048The multinomial of the parts of a partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000346The number of coarsenings of a partition. St000517The Kreweras number of an integer partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000913The number of ways to refine the partition into singletons. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St000143The largest repeated part of a partition. St000150The floored half-sum of the multiplicities of a partition. St000185The weighted size of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000481The number of upper covers of a partition in dominance order. St001091The number of parts in an integer partition whose next smaller part has the same size. St001214The aft of an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000264The girth of a graph, which is not a tree. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000630The length of the shortest palindromic decomposition of a binary word. St000326The position of the first one in a binary word after appending a 1 at the end. St000296The length of the symmetric border of a binary word. St000629The defect of a binary word. St001570The minimal number of edges to add to make a graph Hamiltonian. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001175The size of a partition minus the hook length of the base cell. St001586The number of odd parts smaller than the largest even part in an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000379The number of Hamiltonian cycles in a graph. St001280The number of parts of an integer partition that are at least two. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001525The number of symmetric hooks on the diagonal of a partition. St001561The value of the elementary symmetric function evaluated at 1. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St000464The Schultz index of a connected graph. St001545The second Elser number of a connected graph. St000456The monochromatic index of a connected graph. St001118The acyclic chromatic index of a graph. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001371The length of the longest Yamanouchi prefix of a binary word. St000762The sum of the positions of the weak records of an integer composition. St000284The Plancherel distribution on integer partitions. St000618The number of self-evacuating tableaux of given shape. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001432The order dimension of the partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000567The sum of the products of all pairs of parts. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001141The number of occurrences of hills of size 3 in a Dyck path. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001172The number of 1-rises at odd height of a Dyck path. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St000225Difference between largest and smallest parts in a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001890The maximum magnitude of the Möbius function of a poset. St000846The maximal number of elements covering an element of a poset. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001256Number of simple reflexive modules that are 2-stable reflexive. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001196The global dimension of A minus the global dimension of eAe for the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001309The number of four-cliques in a graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001307The number of induced stars on four vertices in a graph. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001471The magnitude of a Dyck path. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000916The packing number of a graph. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001793The difference between the clique number and the chromatic number of a graph. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001578The minimal number of edges to add or remove to make a graph a line graph. St000287The number of connected components of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001352The number of internal nodes in the modular decomposition of a graph. St001463The number of distinct columns in the nullspace of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001305The number of induced cycles on four vertices in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001689The number of celebrities in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001708The number of pairs of vertices of different degree in a graph. St001742The difference of the maximal and the minimal degree in a graph. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001367The smallest number which does not occur as degree of a vertex in a graph. St000315The number of isolated vertices of a graph. St001060The distinguishing index of a graph. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000321The number of integer partitions of n that are dominated by an integer partition. St000345The number of refinements of a partition. St000628The balance of a binary word. St000655The length of the minimal rise of a Dyck path. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000847The number of standard Young tableaux whose descent set is the binary word. St000897The number of different multiplicities of parts of an integer partition. St000935The number of ordered refinements of an integer partition. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001129The product of the squares of the parts of a partition. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001191Number of simple modules S with Ext_A^i(S,A)=0 for all i=0,1,...,g-1 in the corresponding Nakayama algebra A with global dimension g. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St001481The minimal height of a peak of a Dyck path. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001597The Frobenius rank of a skew partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001722The number of minimal chains with small intervals between a binary word and the top element. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St000017The number of inversions of a standard tableau. St000142The number of even parts of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000256The number of parts from which one can substract 2 and still get an integer partition. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000347The inversion sum of a binary word. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000995The largest even part of an integer partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001193The dimension of Ext_A^1(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001596The number of two-by-two squares inside a skew partition. St001730The number of times the path corresponding to a binary word crosses the base line. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000526The number of posets with combinatorially isomorphic order polytopes. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n−1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000643The size of the largest orbit of antichains under Panyushev complementation. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000311The number of vertices of odd degree in a graph. St000322The skewness of a graph. St000323The minimal crossing number of a graph. St000327The number of cover relations in a poset. St000370The genus of a graph. St000640The rank of the largest boolean interval in a poset. St001395The number of strictly unfriendly partitions of a graph. St001479The number of bridges of a graph. St001668The number of points of the poset minus the width of the poset. St001826The maximal number of leaves on a vertex of a graph. St001632The number of indecomposable injective modules I with dim Ext^1(I,A)=1 for the incidence algebra A of a poset. St001651The Frankl number of a lattice. St000928The sum of the coefficients of the character polynomial of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000735The last entry on the main diagonal of a standard tableau. St000661The number of rises of length 3 of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af.