Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000264
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00160: Permutations graph of inversionsGraphs
St000264: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,5,3,4,2,6] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,6,3,5,4,2] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,6,4,3,5,2] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,4,1,6] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,3,1,5,6] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,3,1,6,5] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,3,5,1,6] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,5,3,4,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,2,1,5,6,4] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,2,4,1,5,6] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,4,5,1,6] => [1,6,2,4,5,3] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,2,3,1,5,6] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,2,3,5,1,6] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,2,4,3,1,6] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,3,2,4,1,6] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => [1,2,6,3,7,4,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [1,2,7,3,4,6,5] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,6,3,7,4,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [1,2,7,3,4,6,5] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,6,4,5,2,7] => [1,3,6,2,7,4,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,7,4,6,5,2] => [1,3,7,2,4,6,5] => ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,3,6,2,7,4,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,7,5,4,6,2] => [1,3,7,2,4,6,5] => ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,4,3,2,6,7,5] => [1,4,2,6,7,3,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,4,2,6,7,3,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,4,2,7,3,6,5] => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 3
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St000454
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000454: Graphs ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 3 - 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,1,2,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 3 - 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 3
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,2,4,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,2,4,5,7] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,4,2,3,6,7,5] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,3,6,7] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,6,3,5,7] => ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,4,5,2,3,6,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,4,5,2,3,7,6] => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,4,5,2,6,3,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,2,3,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,4,6,2,3,5,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,2,3,4,6,7] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,2,3,4,7,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,2,3,6,4,7] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,6,3,4,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 - 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,4,6] => ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => ([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,3,6] => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 4 - 3
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,5,6,3,4,7] => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,3,4,5,7] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,7,5,6] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6,7] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 4 - 3
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,1,2,4,5,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,1,2,4,6,5,7] => ([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> 1 = 4 - 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000162
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00239: Permutations CorteelPermutations
St000162: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,4,5,2,3] => [1,5,4,3,2] => 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,4,5,2,3] => [1,5,4,3,2] => 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,5,2,4,3] => [1,4,2,5,3] => 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,4,5,2,3] => [1,5,4,3,2] => 2 = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,5,2,4,3] => [1,4,2,5,3] => 1 = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,5,3,4,2,6] => [1,5,2,6,3,4] => [1,6,2,5,4,3] => 2 = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,6,3,5,4,2] => [1,6,2,3,5,4] => [1,5,2,3,6,4] => 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [1,5,2,6,3,4] => [1,6,2,5,4,3] => 2 = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,6,4,3,5,2] => [1,6,2,3,5,4] => [1,5,2,3,6,4] => 1 = 3 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [1,3,5,6,2,4] => [1,6,3,5,4,2] => 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => [1,5,4,3,2,6] => 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => [1,4,5,6,2,3] => [1,6,5,4,3,2] => 2 = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => [1,4,6,2,3,5] => [1,6,4,3,2,5] => 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [1,4,5,6,2,3] => [1,6,5,4,3,2] => 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => [1,4,6,2,3,5] => [1,6,4,3,2,5] => 2 = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => [1,5,6,2,3,4] => [1,6,5,3,4,2] => 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [1,5,6,2,3,4] => [1,6,5,3,4,2] => 2 = 4 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,4,1,6] => [1,6,2,3,5,4] => [1,5,2,3,6,4] => 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,3,1,5,6] => [1,5,6,2,4,3] => [1,6,5,3,2,4] => 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,3,1,6,5] => [1,6,2,4,3,5] => [1,4,2,6,3,5] => 1 = 3 - 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,3,5,1,6] => [1,6,2,4,3,5] => [1,4,2,6,3,5] => 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,5,3,4,1,6] => [1,6,2,5,3,4] => [1,5,2,6,4,3] => 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [1,2,6,3,5,4] => [1,2,5,3,6,4] => 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => [1,6,2,5,3,4] => [1,5,2,6,4,3] => 1 = 3 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [1,2,6,3,5,4] => [1,2,5,3,6,4] => 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => [1,4,5,6,2,3] => [1,6,5,4,3,2] => 2 = 4 - 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => [1,4,6,2,3,5] => [1,6,4,3,2,5] => 2 = 4 - 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,2,1,5,6,4] => [1,5,6,2,3,4] => [1,6,5,3,4,2] => 2 = 4 - 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,2,4,1,5,6] => [1,5,6,2,4,3] => [1,6,5,3,2,4] => 1 = 3 - 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => [1,6,2,4,3,5] => [1,4,2,6,3,5] => 1 = 3 - 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,4,5,1,6] => [1,6,2,4,5,3] => [1,4,2,5,6,3] => 1 = 3 - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => [1,6,2,5,3,4] => [1,5,2,6,4,3] => 1 = 3 - 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,2,3,1,5,6] => [1,5,6,2,3,4] => [1,6,5,3,4,2] => 2 = 4 - 2
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,2,3,5,1,6] => [1,6,2,3,5,4] => [1,5,2,3,6,4] => 1 = 3 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,2,4,3,1,6] => [1,6,2,4,3,5] => [1,4,2,6,3,5] => 1 = 3 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => [1,5,6,2,3,4] => [1,6,5,3,4,2] => 2 = 4 - 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => [1,6,2,5,3,4] => [1,5,2,6,4,3] => 1 = 3 - 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => [1,2,5,6,3,4] => [1,2,6,5,4,3] => 2 = 4 - 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,3,2,4,1,6] => [1,6,2,4,3,5] => [1,4,2,6,3,5] => 1 = 3 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => [1,2,6,3,7,4,5] => [1,2,7,3,6,5,4] => ? = 4 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [1,2,7,3,4,6,5] => [1,2,6,3,4,7,5] => ? = 3 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,6,3,7,4,5] => [1,2,7,3,6,5,4] => ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [1,2,7,3,4,6,5] => [1,2,6,3,4,7,5] => ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,6,4,5,2,7] => [1,3,6,2,7,4,5] => [1,7,3,2,6,5,4] => ? = 4 - 2
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,7,4,6,5,2] => [1,3,7,2,4,6,5] => [1,6,3,2,4,7,5] => ? = 3 - 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,3,6,2,7,4,5] => [1,7,3,2,6,5,4] => ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,7,5,4,6,2] => [1,3,7,2,4,6,5] => [1,6,3,2,4,7,5] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,4,3,2,6,7,5] => [1,4,2,6,7,3,5] => [1,7,2,4,6,5,3] => ? = 4 - 2
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,4,2,6,7,3,5] => [1,7,2,4,6,5,3] => ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,4,2,7,3,6,5] => [1,6,2,4,3,7,5] => ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,5,3,4,2,6,7] => [1,5,2,6,7,3,4] => [1,7,2,6,5,4,3] => ? = 4 - 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => [1,5,2,7,3,4,6] => [1,7,2,5,4,3,6] => ? = 4 - 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,5,3,4,6,2,7] => [1,5,2,7,3,4,6] => [1,7,2,5,4,3,6] => ? = 4 - 2
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,6,3,4,5,2,7] => [1,6,2,7,3,4,5] => [1,7,2,6,4,5,3] => ? = 4 - 2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,7,3,4,6,5,2] => [1,7,2,3,4,6,5] => [1,6,2,3,4,7,5] => ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => [1,6,2,7,3,5,4] => [1,7,2,6,4,3,5] => ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,6,3,5,4,7,2] => [1,6,2,3,5,4,7] => [1,5,2,3,6,4,7] => ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,7,3,5,4,6,2] => [1,7,2,3,5,4,6] => [1,5,2,3,7,4,6] => ? = 3 - 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,7,3,5,6,4,2] => [1,7,2,3,5,6,4] => [1,5,2,3,6,7,4] => ? = 3 - 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,7,3,6,5,4,2] => [1,7,2,3,6,4,5] => [1,6,2,3,7,5,4] => ? = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => [1,5,2,6,7,3,4] => [1,7,2,6,5,4,3] => ? = 4 - 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => [1,5,2,7,3,4,6] => [1,7,2,5,4,3,6] => ? = 4 - 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => [1,5,2,7,3,6,4] => [1,6,2,5,4,7,3] => ? = 3 - 2
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => [1,6,2,7,3,5,4] => [1,7,2,6,4,3,5] => ? = 3 - 2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,6,4,3,5,7,2] => [1,6,2,3,5,7,4] => [1,5,2,3,7,6,4] => ? = 3 - 2
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,7,4,3,5,6,2] => [1,7,2,3,5,6,4] => [1,5,2,3,6,7,4] => ? = 3 - 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,7,4,3,6,5,2] => [1,7,2,3,6,4,5] => [1,6,2,3,7,5,4] => ? = 3 - 2
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => [1,6,2,7,3,4,5] => [1,7,2,6,4,5,3] => ? = 4 - 2
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,6,4,5,3,7,2] => [1,6,2,3,7,4,5] => [1,7,2,3,6,5,4] => ? = 4 - 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,7,4,5,3,6,2] => [1,7,2,3,6,4,5] => [1,6,2,3,7,5,4] => ? = 3 - 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => [1,7,2,3,4,6,5] => [1,6,2,3,4,7,5] => ? = 3 - 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => [1,6,2,7,3,4,5] => [1,7,2,6,4,5,3] => ? = 4 - 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,5,4,3,7,2] => [1,6,2,3,7,4,5] => [1,7,2,3,6,5,4] => ? = 4 - 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,7,5,4,3,6,2] => [1,7,2,3,6,4,5] => [1,6,2,3,7,5,4] => ? = 3 - 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => [1,7,2,3,4,6,5] => [1,6,2,3,4,7,5] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [1,3,4,6,7,2,5] => [1,7,3,4,6,5,2] => ? = 4 - 2
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [1,3,5,6,2,4,7] => [1,6,3,5,4,2,7] => ? = 4 - 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [1,3,5,6,7,2,4] => [1,7,3,6,5,4,2] => ? = 4 - 2
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [1,3,5,7,2,4,6] => [1,7,3,5,4,2,6] => ? = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => ? = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => ? = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => [1,4,5,6,7,2,3] => [1,7,6,4,5,3,2] => ? = 4 - 2
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => [1,4,5,7,2,3,6] => [1,7,5,4,3,2,6] => ? = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [1,4,6,2,3,7,5] => [1,7,4,3,2,6,5] => ? = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => [1,4,6,2,3,5,7] => [1,6,4,3,2,5,7] => ? = 4 - 2
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,7,5,6,3] => [1,4,7,2,3,5,6] => [1,7,4,3,2,5,6] => ? = 4 - 2
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => [1,4,7,2,3,5,6] => [1,7,4,3,2,5,6] => ? = 4 - 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,6,4,5,3,7] => [1,6,2,3,7,4,5] => [1,7,2,3,6,5,4] => ? = 4 - 2
Description
The number of nontrivial cycles in the cycle decomposition of a permutation. This statistic is equal to the difference of the number of cycles of $\pi$ (see [[St000031]]) and the number of fixed points of $\pi$ (see [[St000022]]).
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 4 - 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 4
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 4 - 4
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 4 - 4
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 4
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 4
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 4
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 4
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 4 - 4
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St000100
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000100: Posets ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 3 - 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 - 2
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 3 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 4 - 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? = 4 - 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 4 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ([(0,5),(0,6),(1,8),(2,8),(4,9),(5,7),(6,4),(6,7),(7,9),(8,3),(9,1),(9,2)],10)
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,8),(3,7),(4,9),(5,9),(6,1),(6,7),(7,8),(8,2),(9,3),(9,6)],10)
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ? = 3 - 2
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ? = 3 - 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
Description
The number of linear extensions of a poset.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000307: Posets ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3 - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 3 - 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 - 2
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 3 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 4 - 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? = 4 - 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 4 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ([(0,5),(0,6),(1,8),(2,8),(4,9),(5,7),(6,4),(6,7),(7,9),(8,3),(9,1),(9,2)],10)
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,8),(3,7),(4,9),(5,9),(6,1),(6,7),(7,8),(8,2),(9,3),(9,6)],10)
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ? = 3 - 2
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ? = 3 - 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 3 - 2
Description
The number of rowmotion orbits of a poset. Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Mp00232: Dyck paths parallelogram posetPosets
Mp00074: Posets to graphGraphs
St001330: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3 - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 3 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 3 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 4 - 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 4 - 2
[1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 4 - 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3 - 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 4 - 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 4 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(0,5),(1,2),(1,9),(2,6),(3,7),(3,9),(4,6),(4,8),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 3 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(0,5),(1,2),(1,9),(2,6),(3,7),(3,9),(4,6),(4,8),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 4 - 2
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(0,5),(1,2),(1,9),(2,6),(3,7),(3,9),(4,6),(4,8),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 3 - 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(0,5),(1,2),(1,9),(2,6),(3,7),(3,9),(4,6),(4,8),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 3 - 2
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ?
=> ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4 - 2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,6),(1,9),(2,7),(3,8),(4,3),(4,10),(5,4),(5,7),(6,2),(6,5),(7,10),(8,9),(10,1),(10,8)],11)
=> ?
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,6),(1,8),(2,9),(3,10),(4,7),(5,3),(5,9),(6,2),(6,5),(7,8),(9,4),(9,10),(10,1),(10,7)],11)
=> ?
=> ? = 3 - 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,9),(1,7),(1,8),(2,9),(2,10),(3,4),(3,5),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(8,10)],11)
=> ? = 3 - 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 4 - 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000298
Mp00028: Dyck paths reverseDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000298: Posets ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 3
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4 - 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? = 3 - 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(2,10),(3,9),(4,7),(5,2),(5,8),(6,3),(6,7),(7,5),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 3 - 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ([(0,3),(0,6),(1,8),(2,9),(3,7),(4,2),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,5),(11,9)],12)
=> ? = 4 - 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 4 - 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ([(0,5),(0,6),(1,10),(3,7),(4,8),(5,9),(6,1),(6,9),(7,8),(8,2),(9,3),(9,10),(10,4),(10,7)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
Matching statistic: St000845
Mp00028: Dyck paths reverseDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000845: Posets ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 3
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4 - 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? = 3 - 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(2,10),(3,9),(4,7),(5,2),(5,8),(6,3),(6,7),(7,5),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 3 - 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ([(0,3),(0,6),(1,8),(2,9),(3,7),(4,2),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,5),(11,9)],12)
=> ? = 4 - 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 4 - 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ([(0,5),(0,6),(1,10),(3,7),(4,8),(5,9),(6,1),(6,9),(7,8),(8,2),(9,3),(9,10),(10,4),(10,7)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000846
Mp00028: Dyck paths reverseDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000846: Posets ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 4 - 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 - 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 4 - 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 3 - 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 - 3
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 - 3
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4 - 3
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3 - 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? = 3 - 3
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? = 4 - 3
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3 - 3
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(2,10),(3,9),(4,7),(5,2),(5,8),(6,3),(6,7),(7,5),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 3 - 3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ([(0,3),(0,6),(1,8),(2,9),(3,7),(4,2),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,5),(11,9)],12)
=> ? = 4 - 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 4 - 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 4 - 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 3 - 3
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ([(0,5),(0,6),(1,10),(3,7),(4,8),(5,9),(6,1),(6,9),(7,8),(8,2),(9,3),(9,10),(10,4),(10,7)],11)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 4 - 3
Description
The maximal number of elements covering an element of a poset.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000632The jump number of the poset. St000731The number of double exceedences of a permutation.