Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000270: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 4
([(0,1),(0,2),(1,2)],3)
=> 7
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 8
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> 14
([(0,2),(0,3),(1,2),(1,3)],4)
=> 15
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 38
([],5)
=> 1
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> 8
([(0,1),(2,4),(3,4)],5)
=> 8
([(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> 16
([(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 28
([(1,3),(1,4),(2,3),(2,4)],5)
=> 15
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 30
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 28
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 54
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 81
([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
([(0,1),(2,3),(2,4),(3,4)],5)
=> 14
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 28
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 49
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 31
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 52
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 82
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 48
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 38
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 76
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 128
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 86
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 134
Description
The number of forests contained in a graph. That is, for a graph $G = (V,E)$ with vertices $V$ and edges $E$, the number of subsets $E' \subseteq E$ for which the subgraph $(V,E')$ is acyclic. If $T_G(x,y)$ is the Tutte polynomial [2] of $G$, then the number of forests contained in $G$ is given by $T_G(2,1)$.