Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000292
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00131: Permutations descent bottomsBinary words
St000292: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => 1 => 0
[1,1,0,0]
=> [1,2] => [1,2] => 0 => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 11 => 0
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 10 => 0
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 01 => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 10 => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 00 => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 111 => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 110 => 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 101 => 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 110 => 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 100 => 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 011 => 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 110 => 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => 101 => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 110 => 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 100 => 0
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 001 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => 010 => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 100 => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1111 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 1110 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 1101 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1110 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 1100 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => 1011 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => 1110 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => 1101 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1110 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 1100 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 1001 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 1010 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1100 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 1000 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => 0111 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => 1110 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => 1101 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,3,1,5,2] => 1110 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => 1100 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,1,5,4,3] => 1011 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,2,1,5,3] => 1110 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,1,5,4] => 1101 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1110 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 1100 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => 1001 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => 1010 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1100 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 1000 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 0011 => 1
Description
The number of ascents of a binary word.
Matching statistic: St000291
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
Mp00130: Permutations descent topsBinary words
St000291: Binary words ⟶ ℤResult quality: 73% values known / values provided: 73%distinct values known / distinct values provided: 83%
Values
[1,0,1,0]
=> [1,2] => [1,2] => 0 => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1 => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 00 => 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 01 => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 10 => 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => 01 => 0
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 11 => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 001 => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 010 => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,1,3] => 001 => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 011 => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => 001 => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,3,2,4] => 010 => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => 001 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => 011 => 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 110 => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => 101 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => 011 => 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 111 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 0001 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 0010 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => 0001 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 0011 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 0100 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => 0001 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => 0010 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => 0001 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,2,4,1,3] => 0011 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 0110 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,2,5,1,4] => 0101 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [2,5,4,1,3] => 0011 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 0111 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => 0001 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => 0010 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => 0001 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => 0011 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => 0100 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => 0001 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => 0010 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => 0001 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => 0011 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => 0110 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => 0101 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => 0011 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => 0111 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 1100 => 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,3,5,6,7,4,8] => [4,5,7,1,2,3,6,8] => ? => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,3,5,6,8,7,4] => [8,4,5,7,1,2,3,6] => ? => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,3,6,5,4,7,8] => [6,5,1,2,3,4,7,8] => ? => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,5,7,8,4] => [5,4,6,8,1,2,3,7] => ? => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,3,6,7,5,8,4] => [4,6,5,8,1,2,3,7] => ? => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,8,7] => [3,5,8,1,2,4,6,7] => ? => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,2,4,5,3,8,7,6] => [8,3,4,7,1,2,5,6] => ? => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,6,3,7,8] => [3,4,6,1,2,5,7,8] => ? => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,2,4,5,7,6,3,8] => ? => ? => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,2,4,5,7,6,8,3] => ? => ? => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,2,4,5,7,8,6,3] => [5,8,3,4,7,1,2,6] => ? => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,2,4,6,5,7,8,3] => [5,3,4,6,8,1,2,7] => ? => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,2,4,6,7,5,8,3] => ? => ? => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,2,4,6,7,8,5,3] => [4,5,8,3,7,1,2,6] => ? => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,5,4,3,7,6,8] => ? => ? => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,2,5,4,6,3,8,7] => ? => ? => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,4,6,7,8,3] => [4,3,5,6,8,1,2,7] => ? => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,2,5,4,7,6,3,8] => ? => ? => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,2,5,4,7,8,6,3] => [3,5,8,4,7,1,2,6] => ? => ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,2,5,6,4,3,8,7] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,6,5,4,3,8,7] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,2,6,5,7,4,8,3] => ? => ? => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,2,6,7,5,4,8,3] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,6,7,5,8,4,3] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,2,7,6,5,8,4,3] => [5,4,3,8,7,1,2,6] => ? => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,3,2,4,6,7,5,8] => [2,5,7,1,3,4,6,8] => ? => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,7,6,5,8] => [7,2,6,1,3,4,5,8] => ? => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,3,2,4,7,8,6,5] => ? => ? => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,4,6,8,7] => ? => ? => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [2,4,7,1,3,5,6,8] => ? => ? = 1
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,2,5,8,7,6,4] => ? => ? => ? = 0
[1,0,1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,3,2,6,7,5,8,4] => [4,6,2,5,8,1,3,7] => ? => ? = 1
[1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,2,6,7,8,5,4] => [4,5,8,2,7,1,3,6] => ? => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,3,2,7,6,5,4,8] => [7,6,2,5,1,3,4,8] => ? => ? = 1
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,3,2,7,8,6,5,4] => ? => ? => ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,4,2,6,5,7,8] => ? => ? => ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,5,7,8,6,2] => [5,8,2,3,4,7,1,6] => ? => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,4,6,5,8,7,2] => ? => ? => ? = 0
[1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,4,6,7,5,2,8] => [4,7,2,3,6,1,5,8] => ? => ? = 1
[1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,7,6,8,5,2] => [5,4,8,2,3,7,1,6] => ? => ? = 1
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,8,7,6,5,2] => [8,7,6,2,3,5,1,4] => ? => ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,3,5,4,2,7,6,8] => [4,2,3,7,1,5,6,8] => ? => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,3,5,4,6,7,2,8] => [4,2,3,5,7,1,6,8] => ? => ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,3,5,4,7,6,2,8] => [3,7,2,4,6,1,5,8] => ? => ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,3,5,6,7,4,2,8] => [3,4,7,2,6,1,5,8] => ? => ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,3,5,6,7,4,8,2] => [3,4,6,2,5,8,1,7] => ? => ? = 1
[1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,3,5,7,6,8,4,2] => [5,3,4,8,2,7,1,6] => ? => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,3,6,5,4,7,8,2] => ? => ? => ? = 1
[1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,3,6,5,7,8,4,2] => [4,3,5,8,2,7,1,6] => ? => ? = 1
[1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,3,6,5,8,7,4,2] => ? => ? => ? = 0
Description
The number of descents of a binary word.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000386: Dyck paths ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 83%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,4,6,5,7,8] => [6,1,2,3,4,5,7,8] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,3,5,4,6,7,8] => [5,1,2,3,4,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,3,6,5,4,7,8] => [6,5,1,2,3,4,7,8] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7,8] => [4,1,2,3,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5,7,6,8] => [4,7,1,2,3,5,6,8] => ?
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,5,7,8] => [4,6,1,2,3,5,7,8] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,2,4,3,6,7,8,5] => [4,6,7,8,1,2,3,5] => [1,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8] => [4,5,1,2,3,6,7,8] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,2,4,5,3,8,7,6] => [8,4,5,7,1,2,3,6] => ?
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,6,3,7,8] => [4,5,6,1,2,3,7,8] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,6,3,8,7] => [4,5,6,8,1,2,3,7] => [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,7,3,8] => [4,5,6,7,1,2,3,8] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => [4,5,6,7,8,1,2,3] => [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,2,4,5,7,6,8,3] => ? => ?
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,2,4,7,8,6,5,3] => [7,8,6,4,5,1,2,3] => ?
=> ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,5,4,3,6,7,8] => [5,4,1,2,3,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,5,4,3,7,8,6] => [5,4,7,8,1,2,3,6] => [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,2,5,4,6,3,8,7] => [5,4,6,8,1,2,3,7] => ?
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,4,6,7,8,3] => [5,4,6,7,8,1,2,3] => [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,2,5,4,7,6,3,8] => [5,7,4,6,1,2,3,8] => ?
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,2,5,4,7,8,6,3] => [5,7,8,4,6,1,2,3] => ?
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,2,5,4,8,7,6,3] => [8,5,7,4,6,1,2,3] => ?
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,2,5,6,4,3,8,7] => [5,6,4,8,1,2,3,7] => ?
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,2,5,6,4,7,3,8] => [5,6,4,7,1,2,3,8] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,2,5,6,4,7,8,3] => [5,6,4,7,8,1,2,3] => [1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,5,8,7,6,4,3] => [8,7,5,6,4,1,2,3] => ?
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,6,5,4,3,7,8] => [6,5,4,1,2,3,7,8] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,6,7,5,4,3,8] => [6,7,5,4,1,2,3,8] => ?
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,6,5,7,8] => [3,6,1,2,4,5,7,8] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,4,6,5,8,7] => [3,6,8,1,2,4,5,7] => ?
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,3,2,4,6,7,5,8] => [3,6,7,1,2,4,5,8] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,3,2,4,6,7,8,5] => [3,6,7,8,1,2,4,5] => [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,3,2,4,6,8,7,5] => [8,3,6,7,1,2,4,5] => ?
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,3,2,4,7,8,6,5] => [7,8,3,6,1,2,4,5] => ?
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,4,6,7,8] => [3,5,1,2,4,6,7,8] => [1,1,1,0,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,4,6,8,7] => [3,5,8,1,2,4,6,7] => ?
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6,8] => [3,5,7,1,2,4,6,8] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,4,7,8,6] => [3,5,7,8,1,2,4,6] => [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,8,4] => [3,5,6,7,8,1,2,4] => [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,5,7,8,4] => [6,3,5,7,8,1,2,4] => ?
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7,8] => [3,4,1,2,5,6,7,8] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,2,5,6,8,7] => [3,4,8,1,2,5,6,7] => [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,5,7,6,8] => [3,4,7,1,2,5,6,8] => ?
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,2,5,7,8,6] => [3,4,7,8,1,2,5,6] => [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,4,2,6,5,7,8] => ? => ?
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,8,7] => [3,4,6,8,1,2,5,7] => [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,6,7,5,8] => [3,4,6,7,1,2,5,8] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,4,2,6,7,8,5] => [3,4,6,7,8,1,2,5] => [1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,4,2,6,8,7,5] => [8,3,4,6,7,1,2,5] => ?
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,5,2,7,6,8] => [3,4,5,7,1,2,6,8] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> ? = 1
Description
The number of factors DDU in a Dyck path.
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St001732: Dyck paths ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,5,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,5,5,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,6,4,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,4,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,4,4,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,6,3,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,3,2,1]
=> ?
=> ?
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,5,3,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,4,3,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,3,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,3,3,3,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,3,3,3,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,2,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,2,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,6,4,4,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,5,5,3,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ?
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,6,4,3,2,2,1]
=> ?
=> ?
=> ? = 0 + 1
Description
The number of peaks visible from the left. This is, the number of left-to-right maxima of the heights of the peaks of a Dyck path.
Matching statistic: St000007
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00223: Permutations runsortPermutations
St000007: Permutations ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 67%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [1,2,3] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,2,3] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [1,2,4,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [1,2,3,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,3,4,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [1,4,2,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,2,3,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,2,3,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,4,2,3] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,2,4,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,2,3,4] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [1,2,3,5,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [1,2,4,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => [1,2,5,3,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [1,2,5,3,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => [1,2,3,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => [1,3,4,2,5] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => [1,3,5,2,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => [1,3,2,4,5] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => [1,3,2,4,5] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [1,4,5,2,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => [1,4,2,3,5] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [1,5,2,3,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [1,5,2,3,4] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,4,5,2,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => [1,2,3,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [5,6,1,2,3,4,7] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [6,5,1,2,3,4,7] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => [1,2,3,5,6,7,4] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [4,7,1,2,3,5,6] => [1,2,3,5,6,4,7] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [4,6,1,2,3,5,7] => [1,2,3,5,7,4,6] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [4,6,7,1,2,3,5] => [1,2,3,5,4,6,7] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [7,4,6,1,2,3,5] => [1,2,3,5,4,6,7] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [4,5,1,2,3,6,7] => [1,2,3,6,7,4,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [4,5,7,1,2,3,6] => [1,2,3,6,4,5,7] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [4,5,6,1,2,3,7] => [1,2,3,7,4,5,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [6,4,5,1,2,3,7] => [1,2,3,7,4,5,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [5,4,1,2,3,6,7] => [1,2,3,6,7,4,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [5,4,6,1,2,3,7] => [1,2,3,7,4,6,5] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [5,4,6,7,1,2,3] => [1,2,3,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [5,6,4,1,2,3,7] => [1,2,3,7,4,5,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [5,6,4,7,1,2,3] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [6,5,4,1,2,3,7] => [1,2,3,7,4,5,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [6,5,4,7,1,2,3] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => [1,2,4,5,6,7,3] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [3,7,1,2,4,5,6] => [1,2,4,5,6,3,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [3,6,1,2,4,5,7] => [1,2,4,5,7,3,6] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [3,6,7,1,2,4,5] => [1,2,4,5,3,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [7,3,6,1,2,4,5] => [1,2,4,5,3,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [3,5,1,2,4,6,7] => [1,2,4,6,7,3,5] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [3,5,7,1,2,4,6] => [1,2,4,6,3,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [3,5,6,1,2,4,7] => [1,2,4,7,3,5,6] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [3,5,6,7,1,2,4] => [1,2,4,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => [7,3,5,6,1,2,4] => [1,2,4,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => [6,3,5,1,2,4,7] => [1,2,4,7,3,5,6] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => [6,3,5,7,1,2,4] => [1,2,4,3,5,7,6] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,5,4] => [6,7,3,5,1,2,4] => [1,2,4,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => [7,6,3,5,1,2,4] => [1,2,4,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [3,4,1,2,5,6,7] => [1,2,5,6,7,3,4] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => [3,4,7,1,2,5,6] => [1,2,5,6,3,4,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => [3,4,6,1,2,5,7] => [1,2,5,7,3,4,6] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [3,4,6,7,1,2,5] => [1,2,5,3,4,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => [7,3,4,6,1,2,5] => [1,2,5,3,4,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [3,4,5,1,2,6,7] => [1,2,6,7,3,4,5] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [3,4,5,7,1,2,6] => [1,2,6,3,4,5,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [3,4,5,6,1,2,7] => [1,2,7,3,4,5,6] => ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [6,3,4,5,1,2,7] => [1,2,7,3,4,5,6] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [5,3,4,1,2,6,7] => [1,2,6,7,3,4,5] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [5,3,4,6,1,2,7] => [1,2,7,3,4,6,5] => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,4,6,7,2] => [5,3,4,6,7,1,2] => [1,2,3,4,6,7,5] => ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,4,2,7] => [5,6,3,4,1,2,7] => [1,2,7,3,4,5,6] => ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,4,7,2] => [5,6,3,4,7,1,2] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [6,5,3,4,1,2,7] => [1,2,7,3,4,5,6] => ? = 1 + 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [6,5,3,4,7,1,2] => [1,2,3,4,7,5,6] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,3,2,5,6,7] => [4,3,1,2,5,6,7] => [1,2,5,6,7,3,4] => ? = 1 + 1
Description
The number of saliances of the permutation. A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => ([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000764
Mp00093: Dyck paths to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
St000764: Integer compositions ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 33%
Values
[1,0,1,0]
=> 1010 => [1,1,1,1] => [1,1,1,1] => 1 = 0 + 1
[1,1,0,0]
=> 1100 => [2,2] => [2,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> 101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> 101100 => [1,1,2,2] => [2,1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> 110010 => [2,2,1,1] => [1,2,2,1] => 2 = 1 + 1
[1,1,0,1,0,0]
=> 110100 => [2,1,1,2] => [2,2,1,1] => 1 = 0 + 1
[1,1,1,0,0,0]
=> 111000 => [3,3] => [3,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => [1,1,1,1,2,2] => [2,1,1,1,1,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => [1,1,2,2,1,1] => [1,1,1,2,2,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => [1,1,2,1,1,2] => [2,1,1,2,1,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => [1,1,3,3] => [3,1,1,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => [2,2,1,1,1,1] => [1,2,2,1,1,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => [2,2,2,2] => [2,2,2,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => [2,1,1,2,1,1] => [1,2,1,1,2,1] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => [2,1,1,1,1,2] => [2,2,1,1,1,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => [2,1,2,3] => [3,2,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => [3,3,1,1] => [1,3,3,1] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => [3,2,1,2] => [2,3,2,1] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => [3,1,1,3] => [3,3,1,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => [4,4] => [4,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => [1,1,1,1,1,1,2,2] => [2,1,1,1,1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 1010110010 => [1,1,1,1,2,2,1,1] => [1,1,1,1,1,2,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => [1,1,1,1,2,1,1,2] => [2,1,1,1,1,2,1,1] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => [1,1,1,1,3,3] => [3,1,1,1,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => [1,1,2,2,1,1,1,1] => [1,1,1,2,2,1,1,1] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => [1,1,2,2,2,2] => [2,1,1,2,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => [1,1,2,1,1,2,1,1] => [1,1,1,2,1,1,2,1] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => [1,1,2,1,1,1,1,2] => [2,1,1,2,1,1,1,1] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => [1,1,2,1,2,3] => [3,1,1,2,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => [1,1,3,3,1,1] => [1,1,1,3,3,1] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => [1,1,3,2,1,2] => [2,1,1,3,2,1] => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => [1,1,3,1,1,3] => [3,1,1,3,1,1] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => [1,1,4,4] => [4,1,1,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => [2,2,1,1,1,1,1,1] => [1,2,2,1,1,1,1,1] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => [2,2,1,1,2,2] => [2,2,2,1,1,2] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => [2,2,2,2,1,1] => [1,2,2,2,2,1] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => [2,2,2,1,1,2] => [2,2,2,2,1,1] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => [2,2,3,3] => [3,2,2,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => [2,1,1,2,1,1,1,1] => [1,2,1,1,2,1,1,1] => ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => [2,1,1,2,2,2] => [2,2,1,1,2,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => [2,1,1,1,1,2,1,1] => [1,2,1,1,1,1,2,1] => ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => [2,1,1,1,1,1,1,2] => [2,2,1,1,1,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => [2,1,1,1,2,3] => [3,2,1,1,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => [2,1,2,3,1,1] => [1,2,1,2,3,1] => ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => [2,1,2,2,1,2] => [2,2,1,2,2,1] => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => [2,1,2,1,1,3] => [3,2,1,2,1,1] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => [2,1,3,4] => [4,2,1,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => [3,3,1,1,1,1] => [1,3,3,1,1,1] => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => [3,3,2,2] => [2,3,3,2] => ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => [3,2,1,2,1,1] => [1,3,2,1,2,1] => ? = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => [3,2,1,1,1,2] => [2,3,2,1,1,1] => ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => [3,2,2,3] => [3,3,2,2] => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => [3,1,1,3,1,1] => [1,3,1,1,3,1] => 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => [3,1,1,2,1,2] => [2,3,1,1,2,1] => ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => [3,1,1,1,1,3] => [3,3,1,1,1,1] => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => [3,1,2,4] => [4,3,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => [4,4,1,1] => [1,4,4,1] => 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => [4,3,1,2] => [2,4,3,1] => ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => [4,2,1,3] => [3,4,2,1] => ? = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => [4,1,1,4] => [4,4,1,1] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => [5,5] => [5,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> 101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 101010101100 => [1,1,1,1,1,1,1,1,2,2] => [2,1,1,1,1,1,1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> 101010110010 => [1,1,1,1,1,1,2,2,1,1] => [1,1,1,1,1,1,1,2,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => [1,1,1,1,1,1,2,1,1,2] => [2,1,1,1,1,1,1,2,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> 101010111000 => [1,1,1,1,1,1,3,3] => [3,1,1,1,1,1,1,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> 101011001010 => [1,1,1,1,2,2,1,1,1,1] => [1,1,1,1,1,2,2,1,1,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> 101011001100 => [1,1,1,1,2,2,2,2] => [2,1,1,1,1,2,2,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> 101011010010 => [1,1,1,1,2,1,1,2,1,1] => [1,1,1,1,1,2,1,1,2,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> 101011100010 => [1,1,1,1,3,3,1,1] => [1,1,1,1,1,3,3,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> 101011100100 => [1,1,1,1,3,2,1,2] => [2,1,1,1,1,3,2,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> 101100101010 => [1,1,2,2,1,1,1,1,1,1] => [1,1,1,2,2,1,1,1,1,1] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> 101100110010 => [1,1,2,2,2,2,1,1] => [1,1,1,2,2,2,2,1] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> 101101001010 => [1,1,2,1,1,2,1,1,1,1] => [1,1,1,2,1,1,2,1,1,1] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> 101101010010 => [1,1,2,1,1,1,1,2,1,1] => [1,1,1,2,1,1,1,1,2,1] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> 101101100010 => [1,1,2,1,2,3,1,1] => [1,1,1,2,1,2,3,1] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> 101101100100 => [1,1,2,1,2,2,1,2] => [2,1,1,2,1,2,2,1] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> 101110001010 => [1,1,3,3,1,1,1,1] => [1,1,1,3,3,1,1,1] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> 101110001100 => [1,1,3,3,2,2] => [2,1,1,3,3,2] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> 101110010010 => [1,1,3,2,1,2,1,1] => [1,1,1,3,2,1,2,1] => ? = 2 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> 101110010100 => [1,1,3,2,1,1,1,2] => [2,1,1,3,2,1,1,1] => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> 101110100010 => [1,1,3,1,1,3,1,1] => [1,1,1,3,1,1,3,1] => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> 101110100100 => [1,1,3,1,1,2,1,2] => [2,1,1,3,1,1,2,1] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> 101111000010 => [1,1,4,4,1,1] => [1,1,1,4,4,1] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> 101111000100 => [1,1,4,3,1,2] => [2,1,1,4,3,1] => ? = 1 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> 101111001000 => [1,1,4,2,1,3] => [3,1,1,4,2,1] => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> 110010101010 => [2,2,1,1,1,1,1,1,1,1] => [1,2,2,1,1,1,1,1,1,1] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> 110010110010 => [2,2,1,1,2,2,1,1] => [1,2,2,1,1,2,2,1] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> 110011001010 => [2,2,2,2,1,1,1,1] => [1,2,2,2,2,1,1,1] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> 110011010010 => [2,2,2,1,1,2,1,1] => [1,2,2,2,1,1,2,1] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> 110011100010 => [2,2,3,3,1,1] => [1,2,2,3,3,1] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> 110011100100 => [2,2,3,2,1,2] => [2,2,2,3,2,1] => ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> 110100101010 => [2,1,1,2,1,1,1,1,1,1] => [1,2,1,1,2,1,1,1,1,1] => ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> 110100110010 => [2,1,1,2,2,2,1,1] => [1,2,1,1,2,2,2,1] => ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> 110101001010 => [2,1,1,1,1,2,1,1,1,1] => [1,2,1,1,1,1,2,1,1,1] => ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> 110101010010 => [2,1,1,1,1,1,1,2,1,1] => [1,2,1,1,1,1,1,1,2,1] => ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> 110101100010 => [2,1,1,1,2,3,1,1] => [1,2,1,1,1,2,3,1] => ? = 1 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> 110101100100 => [2,1,1,1,2,2,1,2] => [2,2,1,1,1,2,2,1] => ? = 1 + 1
Description
The number of strong records in an integer composition. A strong record is an element $a_i$ such that $a_i > a_j$ for all $j < i$. In particular, the first part of a composition is a strong record. Theorem 1.1 of [1] provides the generating function for compositions with parts in a given set according to the sum of the parts, the number of parts and the number of strong records.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St001737: Permutations ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,5,2,4,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,1,4,3,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,6,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [6,1,2,3,5,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [4,1,2,3,6,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => [3,6,1,2,5,4] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [6,5,1,2,4,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [3,1,2,4,6,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [2,6,1,3,5,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => [2,4,1,3,6,5] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => [2,3,6,1,5,4] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => [6,2,5,1,4,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [4,3,1,2,6,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => [3,2,6,1,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => [2,6,5,1,4,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [6,5,4,1,3,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [2,1,3,4,6,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [1,6,2,3,5,4] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [1,4,2,3,6,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => [1,3,6,2,5,4] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [6,1,5,2,4,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => [1,3,2,4,6,5] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => [1,2,6,3,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => [1,2,4,3,6,5] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => [1,2,3,6,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => [6,1,2,5,4,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => [4,1,3,2,6,5] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,4,6,2,1] => [3,1,2,6,5,4] => 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,4,2,1] => [2,6,1,5,4,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,5,4,2,1] => [6,5,1,4,3,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => [3,2,1,4,6,5] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => [7,1,2,3,4,6,5] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => [5,1,2,3,4,7,6] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => [4,7,1,2,3,6,5] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => [7,6,1,2,3,5,4] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => [4,1,2,3,5,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => [3,7,1,2,4,6,5] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => [3,5,1,2,4,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,4,1] => [3,4,7,1,2,6,5] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,7,6,4,1] => [7,3,6,1,2,5,4] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => [5,4,1,2,3,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,6,5,7,4,1] => [4,3,7,1,2,6,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,5,4,1] => [3,7,6,1,2,5,4] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => [7,6,5,1,2,4,3] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => [3,1,2,4,5,7,6] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,3,5,7,6,1] => [2,7,1,3,4,6,5] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => [2,5,1,3,4,7,6] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,3,6,7,5,1] => [2,4,7,1,3,6,5] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => [7,2,6,1,3,5,4] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => [2,4,1,3,5,7,6] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,4,5,3,7,6,1] => [2,3,7,1,4,6,5] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,3,7,1] => [2,3,5,1,4,7,6] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,3,1] => [2,3,4,7,1,6,5] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,7,6,3,1] => [7,2,3,6,1,5,4] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,5,3,7,1] => [5,2,4,1,3,7,6] => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,4,6,5,7,3,1] => [4,2,3,7,1,6,5] => ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => [3,7,2,6,1,5,4] => ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => [7,6,2,5,1,4,3] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => [4,3,1,2,5,7,6] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => [3,2,7,1,4,6,5] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,4,6,3,7,1] => [3,2,5,1,4,7,6] => ? = 2 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,5,4,6,7,3,1] => [3,2,4,7,1,6,5] => ? = 1 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,5,4,7,6,3,1] => [2,7,3,6,1,5,4] => ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,5,6,4,3,7,1] => [2,5,4,1,3,7,6] => ? = 1 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [2,5,6,4,7,3,1] => [2,4,3,7,1,6,5] => ? = 1 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => [2,3,7,6,1,5,4] => ? = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => [7,2,6,5,1,4,3] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => [5,4,3,1,2,7,6] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,6,5,4,7,3,1] => [4,3,2,7,1,6,5] => ? = 1 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,5,7,4,3,1] => [3,2,7,6,1,5,4] => ? = 1 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => [2,7,6,5,1,4,3] => ? = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => [7,6,5,4,1,3,2] => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [2,1,3,4,5,7,6] => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => [1,7,2,3,4,6,5] => ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => [1,5,2,3,4,7,6] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => [1,4,7,2,3,6,5] => ? = 0 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => [7,1,6,2,3,5,4] => ? = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,5,7,6,4,1] => [7,1,3,6,2,5,4] => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => [5,1,4,2,3,7,6] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [3,2,6,5,7,4,1] => [4,1,3,7,2,6,5] => ? = 1 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [3,2,6,7,5,4,1] => [3,7,1,6,2,5,4] => ? = 0 + 1
Description
The number of descents of type 2 in a permutation. A position $i\in[1,n-1]$ is a descent of type 2 of a permutation $\pi$ of $n$ letters, if it is a descent and if $\pi(j) < \pi(i)$ for all $j < i$.
Matching statistic: St001719
Mp00030: Dyck paths zeta mapDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
Mp00195: Posets order idealsLattices
St001719: Lattices ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> ?
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 2 = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> 2 = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,11),(3,12),(3,13),(4,9),(4,10),(4,13),(5,8),(5,10),(5,12),(6,8),(6,9),(6,11),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1),(18,2)],19)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,1),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,6)],18)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(2,14),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(8,15),(8,16),(9,15),(9,17),(10,16),(10,17),(11,15),(11,18),(12,16),(12,18),(13,17),(13,18),(14,7),(15,19),(16,19),(17,19),(18,2),(18,19),(19,1),(19,14)],20)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(1,12),(2,10),(2,12),(3,10),(3,11),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(7,14),(8,14),(9,14),(10,13),(11,13),(12,13),(14,1),(14,2),(14,3)],15)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(0,6),(2,10),(3,10),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(7,11),(8,11),(9,11),(10,1),(11,2),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(1,11),(2,7),(3,9),(3,10),(4,8),(4,10),(5,8),(5,9),(6,1),(6,7),(7,11),(8,12),(9,12),(10,12),(12,2),(12,6)],13)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,9),(3,10),(4,8),(4,10),(5,8),(5,9),(6,1),(6,2),(8,11),(9,11),(10,11),(11,6)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ?
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(0,6),(1,13),(2,7),(2,9),(3,7),(3,8),(4,11),(4,12),(5,10),(5,12),(6,10),(6,11),(7,14),(8,14),(9,14),(10,15),(11,15),(12,1),(12,15),(13,8),(13,9),(15,2),(15,3),(15,13)],16)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,9),(4,8),(4,10),(5,7),(5,10),(6,7),(6,8),(7,12),(8,12),(9,11),(10,3),(10,12),(11,1),(12,2),(12,9)],13)
=> ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> 2 = 1 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> 1 = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> 1 = 0 + 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Matching statistic: St000534
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
Mp00201: Dyck paths RingelPermutations
St000534: Permutations ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,1,2,3,4,7,5,6] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [6,1,2,3,4,7,8,5] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,1,2,3,8,4,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,1,2,3,7,4,8,6] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [8,1,2,3,6,4,5,7] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [8,1,2,3,7,4,5,6] => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [7,1,2,3,6,4,8,5] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,1,2,3,6,8,4,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,1,2,3,8,7,4,6] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [8,1,2,3,6,7,4,5] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [5,1,2,3,6,7,8,4] => ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [8,1,2,7,6,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => 0
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,1,8,2,3,4,5,7] => 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,1,4,2,6,3,5,7] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [9,1,2,3,4,5,6,7,10,8] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => 0
Description
The number of 2-rises of a permutation. A 2-rise of a permutation $\pi$ is an index $i$ such that $\pi(i)+2 = \pi(i+1)$. For 1-rises, or successions, see [[St000441]].
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001816Eigenvalues of the top-to-random operator acting on a simple module. St001964The interval resolution global dimension of a poset. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.