Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
Description
The bounce count of a Dyck path. For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St000011
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 99% ā—values known / values provided: 99%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 3 + 1
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000273
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000273: Graphs ⟶ ℤResult quality: 60% ā—values known / values provided: 81%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(4,5),(5,7),(6,4),(7,1),(7,2),(7,3)],8)
=> ?
=> ? = 6
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ([(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(7,1)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ([(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8)],9)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ([(0,8),(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7)],9)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 3
[]
=> ?
=> ?
=> ? = 0
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 1
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 1
Description
The domination number of a graph. The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Matching statistic: St000916
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000916: Graphs ⟶ ℤResult quality: 60% ā—values known / values provided: 81%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(4,5),(5,7),(6,4),(7,1),(7,2),(7,3)],8)
=> ?
=> ? = 6
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ([(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(7,1)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ([(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8)],9)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ([(0,8),(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7)],9)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 3
[]
=> ?
=> ?
=> ? = 0
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 1
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 1
Description
The packing number of a graph. This is the size of a largest subset of vertices of a graph, such that any two distinct vertices in the subset have disjoint closed neighbourhoods, or, equivalently, have distance greater than two.
Matching statistic: St001322
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001322: Graphs ⟶ ℤResult quality: 60% ā—values known / values provided: 80%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ([(1,6),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ([(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ([(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ?
=> ? = 6
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(4,5),(5,7),(6,4),(7,1),(7,2),(7,3)],8)
=> ?
=> ? = 6
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ([(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(7,1)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ([(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(6,7)],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8)],9)
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ([(0,8),(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7)],9)
=> ?
=> ? = 3
Description
The size of a minimal independent dominating set in a graph.
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00157: Graphs —connected complement⟶ Graphs
St001339: Graphs ⟶ ℤResult quality: 60% ā—values known / values provided: 79%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ([(1,6),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ([(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ([(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ?
=> ?
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 6
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ?
=> ? = 6
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(4,5),(5,7),(6,4),(7,1),(7,2),(7,3)],8)
=> ?
=> ?
=> ? = 6
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ([(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ?
=> ?
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(7,1)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ([(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)],8)
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(6,7)],8)
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ([],8)
=> ?
=> ?
=> ? = 1
Description
The irredundance number of a graph. A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$. The irredundance number is the smallest size of a maximal irredundant set.
Matching statistic: St000013
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 71% ā—values known / values provided: 71%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000906: Posets ⟶ ℤResult quality: 60% ā—values known / values provided: 70%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> ([],1)
=> ? = 1
[1,0,1,0]
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> ([],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 5
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,3),(3,6),(5,2),(6,4),(6,5)],7)
=> ? = 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,4),(3,5),(5,2),(6,4),(6,5)],7)
=> ? = 3
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(0,6),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6),(6,2)],7)
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(6,5)],7)
=> ? = 2
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(5,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7)
=> ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> ? = 5
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ([(0,5),(4,3),(5,6),(6,1),(6,2),(6,4)],7)
=> ? = 4
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(6,2)],7)
=> ? = 2
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(5,2),(6,2)],7)
=> ? = 2
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(6,3)],7)
=> ? = 2
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6)],7)
=> ? = 2
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6)],7)
=> ? = 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)],7)
=> ? = 2
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(4,5),(4,6)],7)
=> ? = 2
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(6,2)],7)
=> ? = 2
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ([(0,2),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3)],7)
=> ? = 2
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,2),(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(3,4)],7)
=> ? = 2
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(4,5)],7)
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 2
[1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 2
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ? = 6
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 2
Description
The length of the shortest maximal chain in a poset.
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 60% ā—values known / values provided: 65%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 5
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 4
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 3
Description
The maximal area to the right of an up step of a Dyck path.
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 46% ā—values known / values provided: 46%ā—distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 3 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra. Example: [5,6,6,6,6] goes into [2,2,2,2,1]. Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra. The statistic return the global dimension of the CNakayama algebra divided by 2.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000053The number of valleys of the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000528The height of a poset. St000080The rank of the poset. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000392The length of the longest run of ones in a binary word. St000982The length of the longest constant subword. St000317The cycle descent number of a permutation. St000732The number of double deficiencies of a permutation. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001948The number of augmented double ascents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001621The number of atoms of a lattice.