searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000306
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
Description
The bounce count of a Dyck path.
For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St001203
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 86%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 3 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4 + 1
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra.
Example:
[5,6,6,6,6] goes into [2,2,2,2,1].
Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra.
The statistic return the global dimension of the CNakayama algebra divided by 2.
Matching statistic: St001330
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 43%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 43%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0]
=> [3,1,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,5,4,6,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,3,4,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [4,2,5,1,6,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,4,6,3,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 4 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,5,1,3,6,2] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [5,4,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,3,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [4,6,1,3,5,2] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [3,2,5,1,6,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [3,2,4,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,2,6,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [5,6,4,1,3,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => [2,4,1,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => [2,3,5,1,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => [2,3,4,5,7,1,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => [2,3,4,5,6,8,1,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[]
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!