Processing math: 100%

Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000313
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000313: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 0
Description
The number of degree 2 vertices of a graph. A vertex has degree 2 if and only if it lies on a unique maximal path.
Matching statistic: St001137
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001137: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
Description
Number of simple modules that are 3-regular in the corresponding Nakayama algebra.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
St000661: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,3,2,1,7] => ?
=> ?
=> ? = 1
[1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [8,7,4,3,5,2,1,6] => ?
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,1,2,3] => [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,1,2,3,4] => [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [8,7,6,1,2,3,4,5] => [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [8,7,1,2,3,4,5,6] => [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of rises of length 3 of a Dyck path.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
St001141: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,3,2,1,7] => ?
=> ?
=> ? = 1
[1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [8,7,4,3,5,2,1,6] => ?
=> ?
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,1,2,3] => [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,1,2,3,4] => [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [8,7,6,1,2,3,4,5] => [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [8,7,1,2,3,4,5,6] => [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of occurrences of hills of size 3 in a Dyck path. A hill of size three is a subpath beginning at height zero, consisting of three up steps followed by three down steps.
Matching statistic: St001465
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001465: Permutations ⟶ ℤResult quality: 95% values known / values provided: 95%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => [1,4,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [1,2,5,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [1,2,5,3,4] => 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,4,3,2,1,6,7] => [1,5,2,4,3,6,7] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [6,5,4,3,2,1,7] => [1,6,2,5,3,4,7] => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [7,6,5,4,3,2,1] => [1,7,2,6,3,5,4] => ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,3,2,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7,8] => [1,2,6,3,5,4,7,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,7,6,5,4,8] => [1,2,3,4,7,5,6,8] => ? = 0
[1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,3,2,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7,8] => [1,2,5,3,4,6,7,8] => ? = 0
[1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,3,2,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[1,-1,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[1,-1,0,1,-1,1,0,0],[0,0,1,-1,1,-1,0,1],[0,1,-1,1,-1,0,1,0],[0,0,1,-1,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[0,1,-1,0,0,0,0,1],[1,-1,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[1,-1,1,-1,1,-1,0,1],[0,1,-1,1,-1,0,1,0],[0,0,1,-1,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0,0],[0,0,1,-1,0,0,1,0],[0,1,-1,0,0,1,0,0],[1,-1,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[0,0,1,-1,0,0,0,1],[0,1,-1,0,0,0,1,0],[1,-1,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,-1,1],[1,-1,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,1,-1,0,1,0,0],[0,1,-1,0,1,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,1,-1,0,0,1,0],[0,1,-1,0,0,1,0,0],[1,-1,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,1,-1,0,1,0],[0,0,1,-1,0,1,0,0],[0,1,-1,0,1,0,0,0],[1,-1,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
Description
The number of adjacent transpositions in the cycle decomposition of a permutation.
Matching statistic: St000884
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000884: Permutations ⟶ ℤResult quality: 91% values known / values provided: 91%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,2,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,2,5,4,3] => 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,1,2,3,4,6,7] => [1,5,4,3,2,6,7] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [6,1,2,3,4,5,7] => [1,6,5,4,3,2,7] => ? = 0
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => [1,2,3,7,6,5,4,8] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,2,3,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,-1,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7,8] => [1,2,6,5,4,3,7,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => [1,2,3,7,6,5,4,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,2,3,4,5,6,8] => [1,2,7,6,5,4,3,8] => ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,-1,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,8,2,3,4,5,6,7] => [1,2,8,7,6,5,4,3] => ? = 0
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,1,0,0],[0,0,0,1,0,-1,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,7,4,5,6,8] => [1,2,3,4,7,6,5,8] => ? = 0
[1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,0,0,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,1,0,0,0],[0,0,1,0,-1,0,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,6,3,4,5,7,8] => [1,2,3,6,5,4,7,8] => ? = 0
[1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,0,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => [1,2,3,7,6,5,4,8] => ? = 0
[1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,2,3,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,1,0,0,0,0],[0,1,0,-1,0,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7,8] => [1,2,5,4,3,6,7,8] => ? = 0
[1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,2,3,4,5,6,8] => [1,2,7,6,5,4,3,8] => ? = 0
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,1,0],[0,1,0,0,0,0,-1,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,8,2,3,4,5,6,7] => [1,2,8,7,6,5,4,3] => ? = 0
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,2,3,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,0,1,0,0],[0,1,0,0,0,-1,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,0,0,1,0],[0,1,0,0,0,0,-1,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,8,2,3,4,5,6,7] => [1,2,8,7,6,5,4,3] => ? = 0
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [4,1,2,3,5,6,7,8] => [1,4,3,2,5,6,7,8] => ? = 0
[1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
Description
The number of isolated descents of a permutation. A descent i is isolated if neither i+1 nor i1 are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Matching statistic: St001466
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001466: Permutations ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => [1,4,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [1,2,5,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [1,2,5,3,4] => 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,4,3,2,1,6,7] => [1,5,2,4,3,6,7] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [6,5,4,3,2,1,7] => [1,6,2,5,3,4,7] => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [7,6,5,4,3,2,1] => [1,7,2,6,3,5,4] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,6,5,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0]]
=> [1,2,3,4,8,7,6,5] => [1,2,3,4,5,8,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,5,4,3,6,7,8] => [1,2,3,5,4,6,7,8] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0]]
=> [1,2,3,4,8,7,6,5] => [1,2,3,4,5,8,6,7] => ? = 0
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,6,5,4,3,8] => [1,2,3,7,4,6,5,8] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [1,2,8,7,6,5,4,3] => [1,2,3,8,4,7,5,6] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,3,2,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,5,4,3,6,7,8] => [1,2,3,5,4,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,5,4,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,6,5,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,-1,1],[0,0,1,-1,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0]]
=> [1,2,3,4,8,7,6,5] => [1,2,3,4,5,8,6,7] => ? = 0
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,1,-1,0,0,1,0],[0,1,-1,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [1,2,8,7,6,5,4,3] => [1,2,3,8,4,7,5,6] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7,8] => [1,2,6,3,5,4,7,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,6,5,4,3,8] => [1,2,3,7,4,6,5,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,-1,1],[0,0,1,-1,1,-1,1,0],[0,1,-1,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0]]
=> [1,2,3,8,7,6,5,4] => [1,2,3,4,8,5,7,6] => ? = 0
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,1,-1,0,1,0],[0,0,1,-1,0,1,0,0],[0,1,-1,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [1,2,8,7,6,5,4,3] => [1,2,3,8,4,7,5,6] => ? = 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,6,5,4,3,2,8] => [1,2,7,3,6,4,5,8] => ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,1,-1,1,0,0],[0,0,1,-1,1,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
=> [1,2,8,7,6,5,4,3] => [1,2,3,8,4,7,5,6] => ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0]]
=> [1,8,7,6,5,4,3,2] => [1,2,8,3,7,4,6,5] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [2,1,4,3,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,6,5,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0]]
=> [1,2,3,4,5,8,7,6] => [1,2,3,4,5,6,8,7] => ? = 1
Description
The number of transpositions swapping cyclically adjacent numbers in a permutation. Put differently, this is the number of adjacent two-cycles in the chord diagram of a permutation.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001663: Permutations ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,2,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,3,5,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,2,5,4,3] => 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [5,1,2,3,4,6,7] => [1,5,4,3,2,6,7] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [6,1,2,3,4,5,7] => [1,6,5,4,3,2,7] => ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,5,6,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,5,3,4,6,7,8] => [1,2,3,5,4,6,7,8] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => [1,2,3,7,6,5,4,8] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,4,2,3,5,6,7,8] => [1,2,4,3,5,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,5,3,4,6,7,8] => [1,2,3,5,4,6,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7,8] => [1,2,3,4,6,5,7,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,5,6,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,8,7,6] => ? = 0
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,-1,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7,8] => [1,2,6,5,4,3,7,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => [1,2,3,7,6,5,4,8] => ? = 0
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,8,7,6,5] => ? = 0
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,2,3,4,5,6,8] => [1,2,7,6,5,4,3,8] => ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,-1,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => [1,2,3,8,7,6,5,4] => ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,8,2,3,4,5,6,7] => [1,2,8,7,6,5,4,3] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [2,1,4,3,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7,8] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,7,5,6,8] => [1,2,3,4,5,7,6,8] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,8,7] => ? = 1
Description
The number of occurrences of the Hertzsprung pattern 132 in a permutation. A Hertzsprung occurrence of the pattern τ=(τ1,,τk) in a permutation π is a factor πi,πi+1,,πi+k1 of π such that πi+j1τj is constant for 1jk.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St000648: Permutations ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 0
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 0
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => ? = 2
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => ? = 1
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => ? = 1
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => ? = 2
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => ? = 2
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
[1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => ? = 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => ? = 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 0
Description
The number of 2-excedences of a permutation. This is the number of positions 1in such that σ(i)=i+2.
Matching statistic: St000366
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000366: Permutations ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [4,2,3,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,5,3,4,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,4,3,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,5,3,4,2] => 0
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 0
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => ? = 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,7,2,3,4,5,6] => [1,7,3,4,5,6,2] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,7,5,6,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,7,5,6,4] => ? = 0
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => [2,1,5,4,3,6,7] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,7,5,6,4] => ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => [2,1,6,4,5,3,7] => ? = 0
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,7,5,6,4] => ? = 0
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 0
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => ? = 0
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 0
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => ? = 0
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,7,2,3,4,5,6] => [1,7,3,4,5,6,2] => ? = 0
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,1,2,4,5,7,6] => [3,2,1,4,5,7,6] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [3,1,2,4,5,7,6] => [3,2,1,4,5,7,6] => ? = 1
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => [3,2,1,4,7,6,5] => ? = 2
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => [3,2,1,5,4,6,7] => ? = 1
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 1
Description
The number of double descents of a permutation. A double descent of a permutation π is a position i such that π(i)>π(i+1)>π(i+2).
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000534The number of 2-rises of a permutation. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001330The hat guessing number of a graph. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation.