Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00079: Set partitions shapeInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> 0
{{1,2}}
=> [2]
=> 1
{{1},{2}}
=> [1,1]
=> 0
{{1,2,3}}
=> [3]
=> 2
{{1,2},{3}}
=> [2,1]
=> 1
{{1,3},{2}}
=> [2,1]
=> 1
{{1},{2,3}}
=> [2,1]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> 0
{{1,2,3,4}}
=> [4]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> 0
{{1,2,3,4,5}}
=> [5]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> 2
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Mp00079: Set partitions shapeInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> 0
{{1,2}}
=> [2]
=> 1
{{1},{2}}
=> [1,1]
=> 0
{{1,2,3}}
=> [3]
=> 2
{{1,2},{3}}
=> [2,1]
=> 1
{{1,3},{2}}
=> [2,1]
=> 1
{{1},{2,3}}
=> [2,1]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> 0
{{1,2,3,4}}
=> [4]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> 0
{{1,2,3,4,5}}
=> [5]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> 2
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000877
Mp00079: Set partitions shapeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000877: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> [[1]]
=> => ? = 0
{{1,2}}
=> [2]
=> [[1,2]]
=> 0 => 1
{{1},{2}}
=> [1,1]
=> [[1],[2]]
=> 1 => 0
{{1,2,3}}
=> [3]
=> [[1,2,3]]
=> 00 => 2
{{1,2},{3}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1,3},{2}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1},{2,3}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1},{2},{3}}
=> [1,1,1]
=> [[1],[2],[3]]
=> 11 => 0
{{1,2,3,4}}
=> [4]
=> [[1,2,3,4]]
=> 000 => 3
{{1,2,3},{4}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,2,4},{3}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,2},{3,4}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,3,4},{2}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,3},{2,4}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,4},{2,3}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1},{2,3,4}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 0
{{1,2,3,4,5}}
=> [5]
=> [[1,2,3,4,5]]
=> 0000 => 4
{{1,2,3,4},{5}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,3,5},{4}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,3},{4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2,4,5},{3}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,4},{3,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2,5},{3,4}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2},{3,4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0111 => 1
{{1,3,4,5},{2}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,3,4},{2,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,3,5},{2,4}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3},{2,4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0111 => 1
{{1,4,5},{2,3}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,4},{2,3,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
Description
The depth of the binary word interpreted as a path. This is the maximal value of the number of zeros minus the number of ones occurring in a prefix of the binary word, see [1, sec.9.1.2]. The number of binary words of length $n$ with depth $k$ is $\binom{n}{\lfloor\frac{(n+1) - (-1)^{n-k}(k+1)}{2}\rfloor}$, see [2].
Matching statistic: St001176
Mp00079: Set partitions shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 90% values known / values provided: 100%distinct values known / distinct values provided: 90%
Values
{{1}}
=> [1]
=> [1]
=> []
=> ? = 0 - 1
{{1,2}}
=> [2]
=> [1,1]
=> [1]
=> 0 = 1 - 1
{{1},{2}}
=> [1,1]
=> [2]
=> []
=> ? = 0 - 1
{{1,2,3}}
=> [3]
=> [1,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2},{3}}
=> [2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
{{1,3},{2}}
=> [2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
{{1},{2,3}}
=> [2,1]
=> [2,1]
=> [1]
=> 0 = 1 - 1
{{1},{2},{3}}
=> [1,1,1]
=> [3]
=> []
=> ? = 0 - 1
{{1,2,3,4}}
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1,2,3},{4}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2,4},{3}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2},{3,4}}
=> [2,2]
=> [2,2]
=> [2]
=> 0 = 1 - 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1,3,4},{2}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,3},{2,4}}
=> [2,2]
=> [2,2]
=> [2]
=> 0 = 1 - 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1,4},{2,3}}
=> [2,2]
=> [2,2]
=> [2]
=> 0 = 1 - 1
{{1},{2,3,4}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 0 = 1 - 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [4]
=> []
=> ? = 0 - 1
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3 = 4 - 1
{{1,2,3,4},{5}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1,2,3,5},{4}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1,2,3},{4,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2,4,5},{3}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1,2,4},{3,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2,5},{3,4}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,2},{3,4,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 0 = 1 - 1
{{1,3,4,5},{2}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1,3,4},{2,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,3,5},{2,4}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,3},{2,4,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 0 = 1 - 1
{{1,4,5},{2,3}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,4},{2,3,5}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [3,2]
=> [2]
=> 0 = 1 - 1
{{1,5},{2,3,4}}
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
{{1},{2,3,4,5}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 2 = 3 - 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1 = 2 - 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [5]
=> []
=> ? = 0 - 1
{{1},{2},{3},{4},{5},{6}}
=> [1,1,1,1,1,1]
=> [6]
=> []
=> ? = 0 - 1
{{1},{2},{3},{4},{5},{6},{7}}
=> [1,1,1,1,1,1,1]
=> [7]
=> []
=> ? = 0 - 1
{{1},{2},{3},{4},{5},{6},{7},{8}}
=> [1,1,1,1,1,1,1,1]
=> [8]
=> []
=> ? = 0 - 1
{{1},{2},{3},{4},{5},{6},{7},{8},{9}}
=> [1,1,1,1,1,1,1,1,1]
=> [9]
=> []
=> ? = 0 - 1
{{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}}
=> [1,1,1,1,1,1,1,1,1,1]
=> [10]
=> []
=> ? = 0 - 1
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St001727
Mp00079: Set partitions shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001727: Permutations ⟶ ℤResult quality: 70% values known / values provided: 92%distinct values known / distinct values provided: 70%
Values
{{1}}
=> [1]
=> [1,0,1,0]
=> [2,1] => 0
{{1,2}}
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 1
{{1},{2}}
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 0
{{1,2,3}}
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 2
{{1,2},{3}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1,3},{2}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1},{2,3}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 0
{{1,2,3,4}}
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 3
{{1,2,3},{4}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,2,4},{3}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,2},{3,4}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,3,4},{2}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,3},{2,4}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,4},{2,3}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1},{2,3,4}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 4
{{1,2,3,4},{5}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,3,5},{4}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,3},{4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2,4,5},{3}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,4},{3,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2,5},{3,4}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2},{3,4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
{{1,3,4,5},{2}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,3,4},{2,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,3,5},{2,4}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3},{2,4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
{{1,4,5},{2,3}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,4},{2,3,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,3,4,5,6}}
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 5
{{1,2,3,4,5,6,7}}
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 6
{{1,2,3,4,5,6},{7}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1,2,3,4,5,7},{6}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1,2,3,4,6,7},{5}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1,2,3,5,6,7},{4}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1,2,4,5,6,7},{3}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1,3,4,5,6,7},{2}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1},{2,3,4,5,6,7}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 5
{{1},{2},{3},{4},{5},{6},{7}}
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 0
{{1},{2},{3},{4},{5},{6},{7},{8}}
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 0
{{1},{2},{3},{4},{5},{6},{7,8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3},{4},{5},{6,8},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3},{4},{5,6},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3},{4},{5,7},{6},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3},{4},{5,8},{6},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3},{4,8},{5},{6},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3,8},{4},{5},{6},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2},{3,4,5,6,7,8}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1},{2,8},{3},{4},{5},{6},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1},{2,4,5,6,7,8},{3}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1},{2,3,4,6,7,8},{5}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1},{2,3,4,5,7,8},{6}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1},{2,3,4,5,6,8},{7}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1},{2,3,4,5,6,7,8}}
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 6
{{1,2},{3},{4},{5},{6},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,2},{3,4,5,6,7,8}}
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 5
{{1,3},{2},{4},{5},{6},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,4},{2},{3},{5},{6},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,5},{2},{3},{4},{6},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,6},{2},{3},{4},{5},{7},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,7},{2},{3},{4},{5},{6},{8}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,8},{2},{3},{4},{5},{6},{7}}
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 1
{{1,3,4,5,6,7},{2},{8}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,3,4,5,6,8},{2},{7}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,3,4,5,6,7,8},{2}}
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 6
{{1,4,5,6,7,8},{2,3}}
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 5
{{1,2,4,6,7,8},{3},{5}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,4,5,7,8},{3},{6}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,4,5,6,8},{3},{7}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,4,5,6,7,8},{3}}
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 6
{{1,2,3,6,7,8},{4},{5}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,5,7,8},{4},{6}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,5,6,7},{4},{8}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,5,6,7,8},{4}}
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 6
{{1,2,3,6,7,8},{4,5}}
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 5
{{1,2,3,4,7,8},{5},{6}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,4,6,7},{5},{8}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,4,6,8},{5},{7}}
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 5
{{1,2,3,4,6,7,8},{5}}
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 6
Description
The number of invisible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$. Thus, an invisible inversion satisfies $\pi(i) > \pi(j) > i$.
Matching statistic: St001205
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001205: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1,0]
=> [1,0]
=> 0
{{1,2}}
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
{{1,2,3,4,5,6,7}}
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
{{1,2,3,4,5,6},{7}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
{{1,2,3,4,5,7},{6}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
{{1,2,3,4,5},{6,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,4,5},{6},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,4,6,7},{5}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
{{1,2,3,4,6},{5,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,4,6},{5},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,4,7},{5,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,4},{5,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,4},{5,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,4,7},{5},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,4},{5,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,4},{5},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
{{1,2,3,5,6,7},{4}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5
{{1,2,3,5,6},{4,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,5,6},{4},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,5,7},{4,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,5},{4,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,5},{4,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,5,7},{4},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,5},{4,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,5},{4},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
{{1,2,3,6,7},{4,5}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,6},{4,5,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3,6},{4,5},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,7},{4,5,6}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3},{4,5,6,7}}
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
{{1,2,3},{4,5,6},{7}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,7},{4,5},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,5,7},{6}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
{{1,2,3,6,7},{4},{5}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4
{{1,2,3,6},{4,7},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,6},{4},{5,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
{{1,2,3,7},{4,6},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,6,7},{5}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
{{1,2,3,7},{4},{5,6}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
{{1,2,3},{4},{5,6,7}}
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2
Description
The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Nakayama algebra and the relation to Dyck paths.
Matching statistic: St001233
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St001233: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1,0]
=> [1,0]
=> 0
{{1,2}}
=> [2] => [1,1,0,0]
=> [1,1,0,0]
=> 1
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [1,0,1,0]
=> 0
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
{{1,2,3,4,5,6,7}}
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
{{1,2,3,4,5,6},{7}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 5
{{1,2,3,4,5,7},{6}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 5
{{1,2,3,4,5},{6,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,4,5},{6},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,4,6,7},{5}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 5
{{1,2,3,4,6},{5,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,4,6},{5},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,4,7},{5,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,4},{5,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
{{1,2,3,4},{5,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,4,7},{5},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,4},{5,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,4},{5},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,5,6,7},{4}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 5
{{1,2,3,5,6},{4,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,5,6},{4},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,5,7},{4,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,5},{4,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
{{1,2,3,5},{4,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,5,7},{4},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,5},{4,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,5},{4},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,6,7},{4,5}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4
{{1,2,3,6},{4,5,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
{{1,2,3,6},{4,5},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,7},{4,5,6}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
{{1,2,3},{4,5,6,7}}
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 4
{{1,2,3},{4,5,6},{7}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 3
{{1,2,3,7},{4,5},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3},{4,5,7},{6}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 3
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3,6,7},{4},{5}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 4
{{1,2,3,6},{4,7},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3,6},{4},{5,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3,7},{4,6},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 3
{{1,2,3},{4,6,7},{5}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 3
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3,7},{4},{5,6}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3},{4},{5,6,7}}
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
Matching statistic: St001024
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001024: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1,0]
=> [1,0]
=> 1 = 0 + 1
{{1,2}}
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2,3,4,5,6,7}}
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
{{1,2,3,4,5,6},{7}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
{{1,2,3,4,5,7},{6}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
{{1,2,3,4,5},{6,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,4,5},{6},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,4,6,7},{5}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
{{1,2,3,4,6},{5,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,4,6},{5},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,4,7},{5,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,4},{5,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,4},{5,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,4,7},{5},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,4},{5,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,4},{5},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
{{1,2,3,5,6,7},{4}}
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
{{1,2,3,5,6},{4,7}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,5,6},{4},{7}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,5,7},{4,6}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,5},{4,6,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,5},{4,6},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,5,7},{4},{6}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,5},{4,7},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,5},{4},{6,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
{{1,2,3,6,7},{4,5}}
=> [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,6},{4,5,7}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3,6},{4,5},{7}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,7},{4,5,6}}
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3},{4,5,6,7}}
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
{{1,2,3},{4,5,6},{7}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,7},{4,5},{6}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,5,7},{6}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
{{1,2,3,6,7},{4},{5}}
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
{{1,2,3,6},{4,7},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,6},{4},{5,7}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
{{1,2,3,7},{4,6},{5}}
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,6,7},{5}}
=> [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
{{1,2,3,7},{4},{5,6}}
=> [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
{{1,2,3},{4},{5,6,7}}
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
Description
Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000028
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000028: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [2,1] => 1 = 0 + 1
{{1,2}}
=> [2] => [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2 = 1 + 1
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2 = 1 + 1
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3 = 2 + 1
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 1 + 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 0 + 1
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5 = 4 + 1
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 3 + 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 3 + 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 3 + 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 2 = 1 + 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 3 + 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 2 = 1 + 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
{{1,2,3},{4,5,6}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,2,3},{4,5},{6}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,3},{4,6},{5}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2 + 1
{{1,2,4},{3,5,6}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,2,4},{3,5},{6}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,4},{3,6},{5}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,4},{3},{5,6}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2 + 1
{{1,2,5},{3,4,6}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,2,5},{3,4},{6}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,6},{3,4,5}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,2},{3,4,5,6}}
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3 + 1
{{1,2},{3,4,5},{6}}
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
{{1,2,6},{3,4},{5}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2},{3,4,6},{5}}
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
{{1,2},{3,4},{5,6}}
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1 + 1
{{1,2,5},{3,6},{4}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2,5},{3},{4,6}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2 + 1
{{1,2,6},{3,5},{4}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,2},{3,5,6},{4}}
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
{{1,2},{3,5},{4,6}}
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1 + 1
{{1,2,6},{3},{4,5}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
{{1,2},{3,6},{4,5}}
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
{{1,2},{3},{4,5,6}}
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 2 + 1
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 1 + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2 + 1
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1 + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 1 + 1
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 1 + 1
{{1,3,4},{2,5,6}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,3,4},{2,5},{6}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,3,4},{2,6},{5}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,3,4},{2},{5,6}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 2 + 1
{{1,3,5},{2,4,6}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,3,5},{2,4},{6}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,3,6},{2,4,5}}
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
{{1,3},{2,4,5,6}}
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3 + 1
{{1,3},{2,4,5},{6}}
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
{{1,3,6},{2,4},{5}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,3},{2,4,6},{5}}
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
{{1,3},{2,4},{5,6}}
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 1 + 1
{{1,3,5},{2,6},{4}}
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
{{1,3,5},{2},{4,6}}
=> [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 2 + 1
Description
The number of stack-sorts needed to sort a permutation. A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series. Let $W_t(n,k)$ be the number of permutations of size $n$ with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$ are symmetric and unimodal. We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted. Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Mp00128: Set partitions to compositionInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 80%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
{{1},{2}}
=> [1,1] => [2] => ([],2)
=> 1 = 0 + 1
{{1,2,3}}
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,1,1] => [3] => ([],3)
=> 1 = 0 + 1
{{1,2,3,4}}
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,3},{4}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1},{2,3,4}}
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
{{1},{2,3},{4}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [4] => ([],4)
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,2},{3,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,3},{2,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,4},{2,3,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,5},{2,3,4}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2,3,4,5}}
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
{{1},{2,3,4},{5}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,5},{2,3},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,3,5},{4}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2,3},{4,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,4},{2,5},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,4,5},{3}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2,4},{3,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,5},{3,4}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2},{3,4,5}}
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [5] => ([],5)
=> 1 = 0 + 1
{{1,2,3,4,5,6}}
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,3,4,5},{6}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,4,6},{5}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,4},{5,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3,4},{5},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3,5,6},{4}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,5},{4,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3,5},{4},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3,6},{4,5}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3},{4,5,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3},{4,5},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,3,6},{4},{5}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3},{4,6},{5}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,4,5,6},{3}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,4,5},{3,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,4,6},{3,5}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,4},{3,5,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,4},{3,5},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,4},{3,6},{5}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,4},{3},{5,6}}
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,5,6},{3,4}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,5},{3,4,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,5},{3,4},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001589The nesting number of a perfect matching. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.