searching the database
Your data matches 58 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001752
St001752: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 2
['B',2]
=> 2
['G',2]
=> 2
['A',3]
=> 6
['B',3]
=> 8
['C',3]
=> 8
['A',4]
=> 20
Description
The number of elements of maximal order in the Weyl group of a finite Cartan type.
For the symmetric group $\mathfrak S_n$ this is [[OEIS:A074859]].
Matching statistic: St000321
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000321: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000321: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [4,3,2,1]
=> 20
Description
The number of integer partitions of n that are dominated by an integer partition.
A partition $\lambda = (\lambda_1,\ldots,\lambda_n) \vdash n$ dominates a partition $\mu = (\mu_1,\ldots,\mu_n) \vdash n$ if $\sum_{i=1}^k (\lambda_i - \mu_i) \geq 0$ for all $k$.
Matching statistic: St001681
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(4,6),(5,6),(5,8),(6,7),(7,9),(8,2),(8,7),(9,1)],10)
=> ? = 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(4,6),(5,6),(5,8),(6,7),(7,9),(8,2),(8,7),(9,1)],10)
=> ? = 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 20
Description
The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element.
For example, the pentagon lattice has three such sets: the bottom element, and the two antichains of size two. The cube is the smallest lattice which has such sets of three different sizes: the bottom element, six antichains of size two and one antichain of size three.
Matching statistic: St001869
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 20 - 1
Description
The maximum cut size of a graph.
A '''cut''' is a set of edges which connect different sides of a vertex partition $V = A \sqcup B$.
Matching statistic: St001373
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(1,6),(2,4),(2,7),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(1,6),(2,4),(2,7),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 20
Description
The logarithm of the number of winning configurations of the lights out game on a graph.
In the single player lamps out game, every vertex has two states, on or off. The player can toggle the state of a vertex, in which case all the neighbours of the vertex change state, too. The goal is to reach the configuration with all vertices off.
Matching statistic: St001574
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,6),(3,7),(3,8),(4,5),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,6),(3,7),(3,8),(4,5),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 20 - 1
Description
The minimal number of edges to add or remove to make a graph regular.
Matching statistic: St001576
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,6),(3,7),(3,8),(4,5),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,6),(3,7),(3,8),(4,5),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 20 - 1
Description
The minimal number of edges to add or remove to make a graph vertex transitive.
A graph is vertex transitive if for any two edges there is an automorphism that maps one vertex to the other.
Matching statistic: St000146
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 20
Description
The Andrews-Garvan crank of a partition.
If $\pi$ is a partition, let $l(\pi)$ be its length (number of parts), $\omega(\pi)$ be the number of parts equal to 1, and $\mu(\pi)$ be the number of parts larger than $\omega(\pi)$. The crank is then defined by
$$
c(\pi) =
\begin{cases}
l(\pi) &\text{if \(\omega(\pi)=0\)}\\
\mu(\pi) - \omega(\pi) &\text{otherwise}.
\end{cases}
$$
This statistic was defined in [1] to explain Ramanujan's partition congruence $$p(11n+6) \equiv 0 \pmod{11}$$ in the same way as the Dyson rank ([[St000145]]) explains the congruences $$p(5n+4) \equiv 0 \pmod{5}$$ and $$p(7n+5) \equiv 0 \pmod{7}.$$
Matching statistic: St000159
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000159: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 20
Description
The number of distinct parts of the integer partition.
This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
Matching statistic: St000278
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000278: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000278: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 50%●distinct values known / distinct values provided: 40%
Values
['A',1]
=> ([],1)
=> [2]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 6
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 8
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 20
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
The following 48 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000307The number of rowmotion orbits of a poset. St000346The number of coarsenings of a partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St001330The hat guessing number of a graph. St001432The order dimension of the partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000454The largest eigenvalue of a graph if it is integral. St000481The number of upper covers of a partition in dominance order. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001644The dimension of a graph. St000143The largest repeated part of a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000668The least common multiple of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001128The exponens consonantiae of a partition. St001959The product of the heights of the peaks of a Dyck path. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000480The number of lower covers of a partition in dominance order. St000735The last entry on the main diagonal of a standard tableau. St000759The smallest missing part in an integer partition. St001118The acyclic chromatic index of a graph. St001638The book thickness of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000477The weight of a partition according to Alladi. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000455The second largest eigenvalue of a graph if it is integral. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000741The Colin de Verdière graph invariant. St001642The Prague dimension of a graph. St001734The lettericity of a graph. St001812The biclique partition number of a graph. St000095The number of triangles of a graph. St000286The number of connected components of the complement of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000822The Hadwiger number of the graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!