Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000297
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1]
=> 10 => 1
[1,1] => [1,1]
=> [2]
=> 100 => 1
[2] => [2]
=> [1,1]
=> 110 => 2
[1,1,1] => [1,1,1]
=> [3]
=> 1000 => 1
[1,2] => [2,1]
=> [2,1]
=> 1010 => 1
[2,1] => [2,1]
=> [2,1]
=> 1010 => 1
[3] => [3]
=> [1,1,1]
=> 1110 => 3
[1,1,1,1] => [1,1,1,1]
=> [4]
=> 10000 => 1
[1,1,2] => [2,1,1]
=> [3,1]
=> 10010 => 1
[1,2,1] => [2,1,1]
=> [3,1]
=> 10010 => 1
[1,3] => [3,1]
=> [2,1,1]
=> 10110 => 1
[2,1,1] => [2,1,1]
=> [3,1]
=> 10010 => 1
[2,2] => [2,2]
=> [2,2]
=> 1100 => 2
[3,1] => [3,1]
=> [2,1,1]
=> 10110 => 1
[4] => [4]
=> [1,1,1,1]
=> 11110 => 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 100000 => 1
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,1,3] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,2,2] => [2,2,1]
=> [3,2]
=> 10100 => 1
[1,3,1] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[1,4] => [4,1]
=> [2,1,1,1]
=> 101110 => 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[2,1,2] => [2,2,1]
=> [3,2]
=> 10100 => 1
[2,2,1] => [2,2,1]
=> [3,2]
=> 10100 => 1
[2,3] => [3,2]
=> [2,2,1]
=> 11010 => 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[3,2] => [3,2]
=> [2,2,1]
=> 11010 => 2
[4,1] => [4,1]
=> [2,1,1,1]
=> 101110 => 1
[5] => [5]
=> [1,1,1,1,1]
=> 111110 => 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> 1000000 => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,2,3] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,3,2] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
[1,5] => [5,1]
=> [2,1,1,1,1]
=> 1011110 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
Description
The number of leading ones in a binary word.
Mp00040: Integer compositions to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00096: Binary words Foata bijectionBinary words
St000326: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 10 => 10 => 1
[1,1] => [1,1]
=> 110 => 110 => 1
[2] => [2]
=> 100 => 010 => 2
[1,1,1] => [1,1,1]
=> 1110 => 1110 => 1
[1,2] => [2,1]
=> 1010 => 1100 => 1
[2,1] => [2,1]
=> 1010 => 1100 => 1
[3] => [3]
=> 1000 => 0010 => 3
[1,1,1,1] => [1,1,1,1]
=> 11110 => 11110 => 1
[1,1,2] => [2,1,1]
=> 10110 => 11010 => 1
[1,2,1] => [2,1,1]
=> 10110 => 11010 => 1
[1,3] => [3,1]
=> 10010 => 10100 => 1
[2,1,1] => [2,1,1]
=> 10110 => 11010 => 1
[2,2] => [2,2]
=> 1100 => 0110 => 2
[3,1] => [3,1]
=> 10010 => 10100 => 1
[4] => [4]
=> 10000 => 00010 => 4
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => 111110 => 1
[1,1,1,2] => [2,1,1,1]
=> 101110 => 110110 => 1
[1,1,2,1] => [2,1,1,1]
=> 101110 => 110110 => 1
[1,1,3] => [3,1,1]
=> 100110 => 101010 => 1
[1,2,1,1] => [2,1,1,1]
=> 101110 => 110110 => 1
[1,2,2] => [2,2,1]
=> 11010 => 11100 => 1
[1,3,1] => [3,1,1]
=> 100110 => 101010 => 1
[1,4] => [4,1]
=> 100010 => 100100 => 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => 110110 => 1
[2,1,2] => [2,2,1]
=> 11010 => 11100 => 1
[2,2,1] => [2,2,1]
=> 11010 => 11100 => 1
[2,3] => [3,2]
=> 10100 => 01100 => 2
[3,1,1] => [3,1,1]
=> 100110 => 101010 => 1
[3,2] => [3,2]
=> 10100 => 01100 => 2
[4,1] => [4,1]
=> 100010 => 100100 => 1
[5] => [5]
=> 100000 => 000010 => 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => 1111110 => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => 1101110 => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => 1101110 => 1
[1,1,1,3] => [3,1,1,1]
=> 1001110 => 1010110 => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => 1101110 => 1
[1,1,2,2] => [2,2,1,1]
=> 110110 => 111010 => 1
[1,1,3,1] => [3,1,1,1]
=> 1001110 => 1010110 => 1
[1,1,4] => [4,1,1]
=> 1000110 => 1001010 => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => 1101110 => 1
[1,2,1,2] => [2,2,1,1]
=> 110110 => 111010 => 1
[1,2,2,1] => [2,2,1,1]
=> 110110 => 111010 => 1
[1,2,3] => [3,2,1]
=> 101010 => 111000 => 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => 1010110 => 1
[1,3,2] => [3,2,1]
=> 101010 => 111000 => 1
[1,4,1] => [4,1,1]
=> 1000110 => 1001010 => 1
[1,5] => [5,1]
=> 1000010 => 1000100 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => 1101110 => 1
[2,1,1,2] => [2,2,1,1]
=> 110110 => 111010 => 1
[2,1,2,1] => [2,2,1,1]
=> 110110 => 111010 => 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1]
=> ? = 1
[1,1] => [1,1]
=> [2]
=> 1
[2] => [2]
=> [1,1]
=> 2
[1,1,1] => [1,1,1]
=> [3]
=> 1
[1,2] => [2,1]
=> [2,1]
=> 1
[2,1] => [2,1]
=> [2,1]
=> 1
[3] => [3]
=> [1,1,1]
=> 3
[1,1,1,1] => [1,1,1,1]
=> [4]
=> 1
[1,1,2] => [2,1,1]
=> [3,1]
=> 1
[1,2,1] => [2,1,1]
=> [3,1]
=> 1
[1,3] => [3,1]
=> [2,1,1]
=> 1
[2,1,1] => [2,1,1]
=> [3,1]
=> 1
[2,2] => [2,2]
=> [2,2]
=> 2
[3,1] => [3,1]
=> [2,1,1]
=> 1
[4] => [4]
=> [1,1,1,1]
=> 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 1
[1,1,3] => [3,1,1]
=> [3,1,1]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 1
[1,2,2] => [2,2,1]
=> [3,2]
=> 1
[1,3,1] => [3,1,1]
=> [3,1,1]
=> 1
[1,4] => [4,1]
=> [2,1,1,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 1
[2,1,2] => [2,2,1]
=> [3,2]
=> 1
[2,2,1] => [2,2,1]
=> [3,2]
=> 1
[2,3] => [3,2]
=> [2,2,1]
=> 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> 1
[3,2] => [3,2]
=> [2,2,1]
=> 2
[4,1] => [4,1]
=> [2,1,1,1]
=> 1
[5] => [5]
=> [1,1,1,1,1]
=> 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> 1
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> 1
[1,2,3] => [3,2,1]
=> [3,2,1]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> 1
[1,3,2] => [3,2,1]
=> [3,2,1]
=> 1
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> 1
[1,5] => [5,1]
=> [2,1,1,1,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> 1
[2,1,3] => [3,2,1]
=> [3,2,1]
=> 1
[1,2,2,2,2,2,2] => [2,2,2,2,2,2,1]
=> [7,6]
=> ? = 1
[2,2,2,2,2,2,1] => [2,2,2,2,2,2,1]
=> [7,6]
=> ? = 1
[1,5,1,5,1] => [5,5,1,1,1]
=> [5,2,2,2,2]
=> ? = 1
[1,4,3,4,1] => [4,4,3,1,1]
=> [5,3,3,2]
=> ? = 1
[1,4,5,2,1] => [5,4,2,1,1]
=> [5,3,2,2,1]
=> ? = 1
[1,2,5,4,1] => [5,4,2,1,1]
=> [5,3,2,2,1]
=> ? = 1
Description
The multiplicity of the largest part of an integer partition.
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 60% values known / values provided: 97%distinct values known / distinct values provided: 60%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,1] => [1,1]
=> [1]
=> [1,0]
=> ? = 1
[2] => [2]
=> []
=> []
=> ? = 2
[1,1,1] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2] => [2,1]
=> [1]
=> [1,0]
=> ? = 1
[2,1] => [2,1]
=> [1]
=> [1,0]
=> ? = 1
[3] => [3]
=> []
=> []
=> ? = 3
[1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,3] => [3,1]
=> [1]
=> [1,0]
=> ? = 1
[2,1,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1] => [3,1]
=> [1]
=> [1,0]
=> ? = 1
[4] => [4]
=> []
=> []
=> ? = 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,4] => [4,1]
=> [1]
=> [1,0]
=> ? = 1
[2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,2,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[4,1] => [4,1]
=> [1]
=> [1,0]
=> ? = 1
[5] => [5]
=> []
=> []
=> ? = 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,4] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,2,3] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,4,1] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,5] => [5,1]
=> [1]
=> [1,0]
=> ? = 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,2,2] => [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[2,3,1] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4] => [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,1,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,1,2] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,1] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,3] => [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[4,1,1] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[4,2] => [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[5,1] => [5,1]
=> [1]
=> [1,0]
=> ? = 1
[6] => [6]
=> []
=> []
=> ? = 6
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,6] => [6,1]
=> [1]
=> [1,0]
=> ? = 1
[6,1] => [6,1]
=> [1]
=> [1,0]
=> ? = 1
[7] => [7]
=> []
=> []
=> ? = 7
[1,7] => [7,1]
=> [1]
=> [1,0]
=> ? = 1
[7,1] => [7,1]
=> [1]
=> [1,0]
=> ? = 1
[8] => [8]
=> []
=> []
=> ? = 8
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,8] => [8,1]
=> [1]
=> [1,0]
=> ? = 1
[8,1] => [8,1]
=> [1]
=> [1,0]
=> ? = 1
[9] => [9]
=> []
=> []
=> ? = 9
[1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,2,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,2,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,2,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,2,1,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,2,1,1,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,2,1,1,1,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,2,1,1,1,1,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,9] => [9,1]
=> [1]
=> [1,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1] => [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,1] => [9,1]
=> [1]
=> [1,0]
=> ? = 1
[10] => [10]
=> []
=> []
=> ? = 10
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 91% values known / values provided: 91%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1]
=> [[1]]
=> 1
[1,1] => [1,1]
=> [2]
=> [[1,2]]
=> 1
[2] => [2]
=> [1,1]
=> [[1],[2]]
=> 2
[1,1,1] => [1,1,1]
=> [3]
=> [[1,2,3]]
=> 1
[1,2] => [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,1,1,1] => [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 1
[1,1,2] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,2,1] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,3] => [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 1
[2,1,1] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[2,2] => [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 1
[4] => [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,3] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,2,2] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[1,3,1] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[1,4] => [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,2] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[2,2,1] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[2,3] => [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[3,2] => [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
[4,1] => [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1
[5] => [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,2,3] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,3,2] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 1
[1,5] => [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,1,5,5] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[3,3,3,3] => [3,3,3,3]
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[5,5,1,1] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[5,1,1,5] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,2,3,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,3,2,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,5,5,1] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[1,6,5] => [6,5,1]
=> [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 1
[2,3,2,2,2,1] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,3,2,3,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,3,3,2,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,4,2,2,2] => [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
[2,2,3,2,2,1] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,2,3,3,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,2,4,2,2] => [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
[2,2,2,3,2,1] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,2,2,4,2] => [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
[2,2,2,2,3,1] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,2,2,3,3] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,2,3,2,3] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,3,2,2,3] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,5,5] => [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
[3,6,3] => [6,3,3]
=> [3,3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3,11,12],[4],[7],[10]]
=> ? = 3
[3,3,2,2,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[3,2,3,2,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[3,2,2,3,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[3,2,2,2,3] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[4,4,4] => [4,4,4]
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
[5,6,1] => [6,5,1]
=> [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 1
[5,5,2] => [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
[5,2,5] => [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
[1,2,2,2,2,2] => [2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 1
[1,2,2,2,1,3] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,2,1,3,2] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,2,1,2,3] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,1,3,2,2] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,1,3,1,3] => [3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 1
[1,2,1,2,3,2] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,1,2,2,3] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
[1,2,1,1,3,3] => [3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 1
[1,1,3,2,2,2] => [3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000382
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> [1] => 1
[1,1] => [1,1]
=> [[1],[2]]
=> [1,1] => 1
[2] => [2]
=> [[1,2]]
=> [2] => 2
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 1
[1,2] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[3] => [3]
=> [[1,2,3]]
=> [3] => 3
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 1
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[4] => [4]
=> [[1,2,3,4]]
=> [4] => 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 1
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [5] => 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,5,4,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [1,1,4,5] => ? = 1
[1,4,5,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [1,1,4,5] => ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,4,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? => ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[3,1,3,5] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[4,1,2,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[5,4,1,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[5,3,1,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[5,2,1,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? => ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,2,2,4,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,2,3,4,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,2,3,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,2,4,4,1] => [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> [1,1,2,4,4] => ? = 1
[1,2,4,3,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,2,4,2,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,2,5,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,3,4,3,1] => [4,3,3,1,1]
=> [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]]
=> [1,1,3,3,4] => ? = 1
[1,3,4,2,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,3,5,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[1,3,2,4,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,3,2,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,3,3,4,1] => [4,3,3,1,1]
=> [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]]
=> [1,1,3,3,4] => ? = 1
[1,4,4,2,1] => [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> [1,1,2,4,4] => ? = 1
[1,4,5,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,4,3,3,1] => [4,3,3,1,1]
=> [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]]
=> [1,1,3,3,4] => ? = 1
[1,4,3,2,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,4,2,4,1] => [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> [1,1,2,4,4] => ? = 1
[1,4,2,3,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,4,2,2,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,5,4,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,5,3,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[1,5,2,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,6,5] => [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? => ? = 1
[2,3,2,2,2,1] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,3,2,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? => ? = 2
[2,3,3,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? => ? = 2
[2,4,3,2,1] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[2,4,2,3,1] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[2,4,2,2,2] => [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? => ? = 2
[2,5,4,1] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[2,5,3,2] => [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> [2,2,3,5] => ? = 2
Description
The first part of an integer composition.
Mp00040: Integer compositions to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 10 => [1,1] => 1
[1,1] => [1,1]
=> 110 => [2,1] => 1
[2] => [2]
=> 100 => [1,2] => 2
[1,1,1] => [1,1,1]
=> 1110 => [3,1] => 1
[1,2] => [2,1]
=> 1010 => [1,1,1,1] => 1
[2,1] => [2,1]
=> 1010 => [1,1,1,1] => 1
[3] => [3]
=> 1000 => [1,3] => 3
[1,1,1,1] => [1,1,1,1]
=> 11110 => [4,1] => 1
[1,1,2] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[1,2,1] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[1,3] => [3,1]
=> 10010 => [1,2,1,1] => 1
[2,1,1] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[2,2] => [2,2]
=> 1100 => [2,2] => 2
[3,1] => [3,1]
=> 10010 => [1,2,1,1] => 1
[4] => [4]
=> 10000 => [1,4] => 4
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => [5,1] => 1
[1,1,1,2] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,1,2,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,1,3] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[1,2,1,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,2,2] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[1,3,1] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[1,4] => [4,1]
=> 100010 => [1,3,1,1] => 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[2,1,2] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[2,2,1] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[2,3] => [3,2]
=> 10100 => [1,1,1,2] => 2
[3,1,1] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[3,2] => [3,2]
=> 10100 => [1,1,1,2] => 2
[4,1] => [4,1]
=> 100010 => [1,3,1,1] => 1
[5] => [5]
=> 100000 => [1,5] => 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => [6,1] => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,1,3] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,2,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,1,3,1] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,1,4] => [4,1,1]
=> 1000110 => [1,3,2,1] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,2,1,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,2,2,1] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,2,3] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,3,2] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[1,4,1] => [4,1,1]
=> 1000110 => [1,3,2,1] => 1
[1,5] => [5,1]
=> 1000010 => [1,4,1,1] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[2,1,1,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[2,1,2,1] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,5,4,1] => [5,4,1,1]
=> 101000110 => [1,1,1,3,2,1] => ? = 1
[1,4,5,1] => [5,4,1,1]
=> 101000110 => [1,1,1,3,2,1] => ? = 1
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,5,5] => [5,5,1,1]
=> 110000110 => [2,4,2,1] => ? = 1
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,2,2,2,2,2] => [2,2,2,2,2,2]
=> 11111100 => [6,2] => ? = 2
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,4,5] => [5,4,2,1]
=> 101001010 => [1,1,1,2,1,1,1,1] => ? = 1
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,2,2,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,3,5] => [5,3,3,1]
=> 100110010 => [1,2,2,2,1,1] => ? = 1
[4,1,2,5] => [5,4,2,1]
=> 101001010 => [1,1,1,2,1,1,1,1] => ? = 1
[5,5,1,1] => [5,5,1,1]
=> 110000110 => [2,4,2,1] => ? = 1
[5,4,1,2] => [5,4,2,1]
=> 101001010 => [1,1,1,2,1,1,1,1] => ? = 1
[5,3,1,3] => [5,3,3,1]
=> 100110010 => [1,2,2,2,1,1] => ? = 1
[5,2,1,4] => [5,4,2,1]
=> 101001010 => [1,1,1,2,1,1,1,1] => ? = 1
[5,1,1,5] => [5,5,1,1]
=> 110000110 => [2,4,2,1] => ? = 1
[6,6] => [6,6]
=> 11000000 => [2,6] => ? = 6
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> 111110110 => [5,1,2,1] => ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[1,2,2,3,3,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[1,2,2,4,3] => [4,3,2,2,1]
=> 101011010 => [1,1,1,1,2,1,1,1] => ? = 1
[1,2,3,3,2,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,2,3,4,2] => [4,3,2,2,1]
=> 101011010 => [1,1,1,1,2,1,1,1] => ? = 1
[1,2,3,2,3,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,2,3,2,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[1,2,3,3,3] => [3,3,3,2,1]
=> 11101010 => [3,1,1,1,1,1] => ? = 1
[1,2,4,4,1] => [4,4,2,1,1]
=> 110010110 => [2,2,1,1,2,1] => ? = 1
[1,2,4,3,2] => [4,3,2,2,1]
=> 101011010 => [1,1,1,1,2,1,1,1] => ? = 1
Description
The last part of an integer composition.
Matching statistic: St000745
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> [[1]]
=> 1
[1,1] => [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
[2] => [2]
=> [[1,2]]
=> [[1],[2]]
=> 2
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
[1,2] => [2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,5,4,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 1
[1,4,5,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 1
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,5,5] => [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ?
=> ? = 1
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,4,4] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,4,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 1
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9,12]]
=> ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,3,4] => [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12]]
=> ? = 2
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,2,2,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,3,5] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11],[12]]
=> ? = 1
[4,4,2,2] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
[4,3,2,3] => [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12]]
=> ? = 2
[4,2,2,4] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
[4,1,2,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 1
[5,5,1,1] => [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ?
=> ? = 1
[5,4,1,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 1
[5,3,1,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11],[12]]
=> ? = 1
[5,2,1,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 1
[5,1,1,5] => [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ?
=> ? = 1
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ?
=> ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[1,2,2,3,3,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[1,2,2,4,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11],[12]]
=> ? = 1
[1,2,3,3,2,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,2,3,4,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11],[12]]
=> ? = 1
[1,2,3,2,3,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000990
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000990: Permutations ⟶ ℤResult quality: 50% values known / values provided: 61%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,2] => 1
[1,1] => [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2] => [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,2] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[3] => [3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 4
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 1
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 1
[5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 5
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 6
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 1
[7] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 7
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[1,7] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 1
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 2
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 2
[7,1] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 1
[8] => [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? = 8
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,9,8,7,6,5,4,3,2] => ? = 1
Description
The first ascent of a permutation. For a permutation $\pi$, this is the smallest index such that $\pi(i) < \pi(i+1)$. For the first descent, see [[St000654]].
St000657: Integer compositions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 90%
Values
[1] => 1
[1,1] => 1
[2] => 2
[1,1,1] => 1
[1,2] => 1
[2,1] => 1
[3] => 3
[1,1,1,1] => 1
[1,1,2] => 1
[1,2,1] => 1
[1,3] => 1
[2,1,1] => 1
[2,2] => 2
[3,1] => 1
[4] => 4
[1,1,1,1,1] => 1
[1,1,1,2] => 1
[1,1,2,1] => 1
[1,1,3] => 1
[1,2,1,1] => 1
[1,2,2] => 1
[1,3,1] => 1
[1,4] => 1
[2,1,1,1] => 1
[2,1,2] => 1
[2,2,1] => 1
[2,3] => 2
[3,1,1] => 1
[3,2] => 2
[4,1] => 1
[5] => 5
[1,1,1,1,1,1] => 1
[1,1,1,1,2] => 1
[1,1,1,2,1] => 1
[1,1,1,3] => 1
[1,1,2,1,1] => 1
[1,1,2,2] => 1
[1,1,3,1] => 1
[1,1,4] => 1
[1,2,1,1,1] => 1
[1,2,1,2] => 1
[1,2,2,1] => 1
[1,2,3] => 1
[1,3,1,1] => 1
[1,3,2] => 1
[1,4,1] => 1
[1,5] => 1
[2,1,1,1,1] => 1
[2,1,1,2] => 1
[2,1,2,1] => 1
[1,1,1,1,1,1,1,1,1,1] => ? = 1
[1,1,1,1,1,1,1,1,2] => ? = 1
[1,1,1,1,1,1,1,2,1] => ? = 1
[1,1,1,1,1,1,1,3] => ? = 1
[1,1,1,1,1,1,2,1,1] => ? = 1
[1,1,1,1,1,1,2,2] => ? = 1
[1,1,1,1,1,1,3,1] => ? = 1
[1,1,1,1,1,1,4] => ? = 1
[1,1,1,1,1,2,1,1,1] => ? = 1
[1,1,1,1,1,2,1,2] => ? = 1
[1,1,1,1,1,2,2,1] => ? = 1
[1,1,1,1,1,2,3] => ? = 1
[1,1,1,1,1,3,1,1] => ? = 1
[1,1,1,1,1,3,2] => ? = 1
[1,1,1,1,1,4,1] => ? = 1
[1,1,1,1,1,5] => ? = 1
[1,1,1,1,2,1,1,1,1] => ? = 1
[1,1,1,1,2,1,1,2] => ? = 1
[1,1,1,1,2,1,2,1] => ? = 1
[1,1,1,1,2,1,3] => ? = 1
[1,1,1,1,2,2,1,1] => ? = 1
[1,1,1,1,2,2,2] => ? = 1
[1,1,1,1,2,3,1] => ? = 1
[1,1,1,1,2,4] => ? = 1
[1,1,1,1,3,1,1,1] => ? = 1
[1,1,1,1,3,1,2] => ? = 1
[1,1,1,1,3,2,1] => ? = 1
[1,1,1,1,3,3] => ? = 1
[1,1,1,1,4,1,1] => ? = 1
[1,1,1,1,4,2] => ? = 1
[1,1,1,1,5,1] => ? = 1
[1,1,1,1,6] => ? = 1
[1,1,1,2,1,1,1,1,1] => ? = 1
[1,1,1,2,1,1,1,2] => ? = 1
[1,1,1,2,1,1,2,1] => ? = 1
[1,1,1,2,1,1,3] => ? = 1
[1,1,1,2,1,2,1,1] => ? = 1
[1,1,1,2,1,2,2] => ? = 1
[1,1,1,2,1,3,1] => ? = 1
[1,1,1,2,1,4] => ? = 1
[1,1,1,2,2,1,1,1] => ? = 1
[1,1,1,2,2,1,2] => ? = 1
[1,1,1,2,2,2,1] => ? = 1
[1,1,1,2,2,3] => ? = 1
[1,1,1,2,3,1,1] => ? = 1
[1,1,1,2,3,2] => ? = 1
[1,1,1,2,4,1] => ? = 1
[1,1,1,2,5] => ? = 1
[1,1,1,3,1,1,1,1] => ? = 1
[1,1,1,3,1,1,2] => ? = 1
Description
The smallest part of an integer composition.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000655The length of the minimal rise of a Dyck path. St000617The number of global maxima of a Dyck path. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000700The protection number of an ordered tree. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000654The first descent of a permutation. St001075The minimal size of a block of a set partition. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St001829The common independence number of a graph. St001119The length of a shortest maximal path in a graph. St001316The domatic number of a graph. St000908The length of the shortest maximal antichain in a poset. St001322The size of a minimal independent dominating set in a graph. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000210Minimum over maximum difference of elements in cycles. St000487The length of the shortest cycle of a permutation. St000906The length of the shortest maximal chain in a poset. St000090The variation of a composition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000314The number of left-to-right-maxima of a permutation. St000310The minimal degree of a vertex of a graph. St000699The toughness times the least common multiple of 1,. St000260The radius of a connected graph. St000456The monochromatic index of a connected graph. St000455The second largest eigenvalue of a graph if it is integral.