searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000337
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[]
=> []
=> [1,0]
=> [1] => 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 3
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 3
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,3,2,6,1] => 2
Description
The lec statistic, the sum of the inversion numbers of the hook factors of a permutation.
For a permutation $\sigma = p \tau_{1} \tau_{2} \cdots \tau_{k}$ in its hook factorization, [1] defines $$ \textrm{lec} \, \sigma = \sum_{1 \leq i \leq k} \textrm{inv} \, \tau_{i} \, ,$$ where $\textrm{inv} \, \tau_{i}$ is the number of inversions of $\tau_{i}$.
Matching statistic: St001928
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001928: Permutations ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 80%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001928: Permutations ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 80%
Values
[]
=> []
=> [1,0]
=> [1] => 0
[[]]
=> [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 3
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 3
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,3,2,6,1] => 2
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 1
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => ? = 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,1] => ? = 2
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,3,2,5,6,7,1] => ? = 2
[[[],[],[]],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,2,6,7,1] => ? = 2
[[[[]],[]],[],[]]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [4,3,5,2,6,7,1] => ? = 3
[[[],[],[],[]],[]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,6,2,7,1] => ? = 2
[[[[[[[]]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 3
[[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
[[],[],[[],[],[[]]]]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,3,5,6,8,7,4,1] => ? = 2
[[],[[[[],[[]]]]]]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,6,8,7,5,4,3,1] => ? = 3
[[[]],[],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 2
[[[]],[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,7,6,8,1] => ? = 4
[[[]],[[[]]],[[]]]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [3,2,6,5,4,8,7,1] => ? = 3
[[[]],[[[]],[]],[]]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [3,2,6,5,7,4,8,1] => ? = 4
[[[],[]],[],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,8,1] => ? = 2
[[[[]]],[],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,5,6,7,8,1] => ? = 2
[[[],[],[]],[],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,5,2,6,7,8,1] => ? = 2
[[[[]],[]],[[]],[]]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [4,3,5,2,7,6,8,1] => ? = 4
[[[[]],[[]],[]],[]]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [4,3,6,5,7,2,8,1] => ? = 4
[[[[[]],[]],[]],[]]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [5,4,6,3,7,2,8,1] => ? = 4
[[[[[[]]]],[]],[]]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [6,5,4,3,7,2,8,1] => ? = 4
[[[[[[]],[]]]],[]]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [6,5,7,4,3,2,8,1] => ? = 4
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [7,6,5,4,3,2,8,1] => ? = 4
[[[],[[],[[[]]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [3,5,8,7,6,4,2,1] => ? = 3
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,8,7,2,1] => ? = 4
[[[[[[]],[]],[]]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [6,5,7,4,8,3,2,1] => ? = 4
[[[[[[[]]]],[]]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [7,6,5,4,8,3,2,1] => ? = 4
[[[[[[]],[[]]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [6,5,8,7,4,3,2,1] => ? = 4
[[[[[[[]],[]]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [7,6,8,5,4,3,2,1] => ? = 4
[[[[[[[[]]]]]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => ? = 4
[[],[],[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 1
[[[]],[],[],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,8,9,1] => ? = 2
[[[],[]],[],[],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,8,9,1] => ? = 2
[[[[[[[[[]]]]]]]]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => ? = 4
Description
The number of non-overlapping descents in a permutation.
In other words, any maximal descending subsequence $\pi_i,\pi_{i+1},\dots,\pi_k$ contributes $\lfloor\frac{k-i+1}{2}\rfloor$ to the total count.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[]
=> ([],1)
=> ([],1)
=> 0
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[[]]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3
[[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000260
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 40%
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 40%
Values
[]
=> ([],1)
=> [1] => ([],1)
=> 0
[[]]
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[[]]]
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000456
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 20%
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 20%
Values
[]
=> ([],1)
=> [1] => ([],1)
=> ? = 0
[[]]
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[[]]]
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 3
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000455
Values
[]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 2
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[[]]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 1 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!